File size: 2,385 Bytes
b44cafc
 
 
 
 
 
 
 
 
f82bef3
 
 
 
b44cafc
 
 
 
f82bef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b44cafc
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: cc-by-4.0
task_categories:
- image-to-image
language:
- en
size_categories:
- 1K<n<10K
---
# BridgeData V2 Image Triplets Dataset

This dataset contains image triplets from BridgeData V2 trajectories in ImageFolder format.

## Derived From

This dataset is a derivative of the 30 GB scripted subset of [BridgeData V2 from RAIL-Berkeley](https://rail-berkeley.github.io/bridgedata/). All rights and original licensing apply.

## Dataset Structure

- **initial_images/**: Contains first frame images (initial state)
- **intermediate_images/**: Contains intermediate frame images (frame 38)
- **final_images/**: Contains final frame images (frame 43)
- **metadata.jsonl**: Contains metadata for each trajectory with image file paths

## Format

Each trajectory contributes one entry with:
- First image (frame 0) - Initial state
- Intermediate image (frame 38) - Intermediate edited state 
- Frame 43 image (frame 43) - Final edited state
- Trajectory metadata (campaign, session, trajectory names, etc.)

All images have a consistent resolution of 640 x 480 pixels.

## Statistics

- Total trajectories: 8802
- Total images: 26406
- Image triplets per trajectory: 1
- Image resolution: 640 x 480 pixels

## Loading the Dataset

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("imagefolder", data_dir="path/to/dataset")

# Access image triplets
example = dataset[0]
initial_image = example["first_image_file_name"]  # PIL Image - frame 0 (in initial_images/)
intermediate_image = example["intermediate_image_file_name"]  # PIL Image - frame 38 (in intermediate_images/)
final_image = example["frame_43_image_file_name"]  # PIL Image - frame 43 (in final_images/)
metadata = {k: v for k, v in example.items() if not k.endswith("_file_name") and k != "intermediate_image_file_name"}
```

## Citation

If you use this dataset, please cite the original BridgeData V2 paper:

```bibtex
@inproceedings{walke2023bridgedata,
    title={BridgeData V2: A Dataset for Robot Learning at Scale},
    author={Walke, Homer and Black, Kevin and Lee, Abraham and Kim, Moo Jin and Du, Max and Zheng, Chongyi and Zhao, Tony and Hansen-Estruch, Philippe and Vuong, Quan and He, Andre and Myers, Vivek and Fang, Kuan and Finn, Chelsea and Levine, Sergey},
    booktitle={Conference on Robot Learning (CoRL)},
    year={2023}
} 
```

Generated on: 2025-09-07