Sanchit Gandhi
commited on
Commit
·
39e9b1f
1
Parent(s):
44fd86d
Update sharded gzip paths
Browse files- tedlium.py +326 -70
tedlium.py
CHANGED
|
@@ -11,9 +11,13 @@
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
import os
|
|
|
|
|
|
|
|
|
|
| 17 |
from pathlib import Path
|
| 18 |
|
| 19 |
import numpy as np
|
|
@@ -23,107 +27,359 @@ import datasets
|
|
| 23 |
from datasets.tasks import AutomaticSpeechRecognition
|
| 24 |
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
"""
|
| 42 |
|
| 43 |
-
|
| 44 |
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
VERSION = datasets.Version("1.1.0")
|
| 55 |
|
| 56 |
-
BUILDER_CONFIGS =
|
| 57 |
|
| 58 |
def _info(self):
|
| 59 |
features = datasets.Features(
|
| 60 |
{
|
| 61 |
-
"audio": datasets.features.Audio(sampling_rate=
|
| 62 |
"text": datasets.Value("string"),
|
|
|
|
|
|
|
| 63 |
"file": datasets.Value("string"),
|
| 64 |
"id": datasets.Value("string"),
|
| 65 |
}
|
| 66 |
)
|
| 67 |
return datasets.DatasetInfo(
|
| 68 |
-
description=
|
| 69 |
features=features,
|
| 70 |
supervised_keys=("audio", "text"),
|
| 71 |
-
homepage=
|
| 72 |
license=_LICENSE,
|
| 73 |
-
citation=
|
| 74 |
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
| 75 |
)
|
| 76 |
|
| 77 |
def _split_generators(self, dl_manager):
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
|
| 124 |
def _extract_audio_segment(segment, sampling_rate, start_sec, end_sec):
|
| 125 |
"""Extracts segment of audio samples (as an ndarray) from the given segment."""
|
|
|
|
| 126 |
start_sample = int(start_sec * sampling_rate)
|
| 127 |
end_sample = min(int(end_sec * sampling_rate), segment.shape[0])
|
| 128 |
samples = segment[start_sample:end_sample]
|
| 129 |
return samples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""TED-LIUM speech recognition dataset."""
|
| 16 |
|
| 17 |
import os
|
| 18 |
+
import re
|
| 19 |
+
from collections import defaultdict
|
| 20 |
+
from io import BytesIO
|
| 21 |
from pathlib import Path
|
| 22 |
|
| 23 |
import numpy as np
|
|
|
|
| 27 |
from datasets.tasks import AutomaticSpeechRecognition
|
| 28 |
|
| 29 |
|
| 30 |
+
_DL_URL = "https://huggingface.co/datasets/LIUM/tedlium/resolve/main/"
|
| 31 |
+
|
| 32 |
+
_LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class TedliumReleaseConfig(datasets.BuilderConfig):
|
| 36 |
+
"""BuilderConfig for a release of the TED-LIUM dataset."""
|
| 37 |
+
|
| 38 |
+
def __init__(self, *, url, download_urls, split_paths, citation, **kwargs):
|
| 39 |
+
super(TedliumReleaseConfig, self).__init__(version=datasets.Version("1.0.1"), **kwargs)
|
| 40 |
+
self.url = url
|
| 41 |
+
self.download_urls = download_urls
|
| 42 |
+
# List of split, path pairs containing the relative path within the
|
| 43 |
+
# extracted tarball to the data for each split.
|
| 44 |
+
self.split_paths = split_paths
|
| 45 |
+
self.citation = citation
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def _make_builder_configs():
|
| 49 |
+
"""Creates builder configs for all supported Tedlium dataset releases."""
|
| 50 |
+
release1 = TedliumReleaseConfig(
|
| 51 |
+
name="release1",
|
| 52 |
+
description="""\
|
| 53 |
+
The TED-LIUM corpus is English-language TED talks, with transcriptions,
|
| 54 |
+
sampled at 16kHz. It contains about 118 hours of speech.
|
| 55 |
+
|
| 56 |
+
This is the TED-LIUM corpus release 1,
|
| 57 |
+
licensed under Creative Commons BY-NC-ND 3.0
|
| 58 |
+
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
|
| 59 |
+
""",
|
| 60 |
+
citation="""\
|
| 61 |
+
@inproceedings{rousseau2012tedlium,
|
| 62 |
+
title={TED-LIUM: an Automatic Speech Recognition dedicated corpus},
|
| 63 |
+
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
|
| 64 |
+
booktitle={Conference on Language Resources and Evaluation (LREC)},
|
| 65 |
+
pages={125--129},
|
| 66 |
+
year={2012}
|
| 67 |
+
}
|
| 68 |
+
""",
|
| 69 |
+
url="https://www.openslr.org/7/",
|
| 70 |
+
download_urls={
|
| 71 |
+
"train": [_DL_URL + os.path.join("TEDLIUM_release1", "train.tar.gz")],
|
| 72 |
+
"validation": [_DL_URL + os.path.join("TEDLIUM_release1", "dev.tar.gz")],
|
| 73 |
+
"test": [_DL_URL + os.path.join("TEDLIUM_release1", "test.tar.gz")],
|
| 74 |
+
},
|
| 75 |
+
split_paths=[
|
| 76 |
+
(datasets.Split.TRAIN, "train"),
|
| 77 |
+
(datasets.Split.VALIDATION, "dev"),
|
| 78 |
+
(datasets.Split.TEST, "test"),
|
| 79 |
+
],
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
release2 = TedliumReleaseConfig(
|
| 83 |
+
name="release2",
|
| 84 |
+
description="""\
|
| 85 |
+
This is the TED-LIUM corpus release 2,
|
| 86 |
+
licensed under Creative Commons BY-NC-ND 3.0
|
| 87 |
+
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
|
| 88 |
+
|
| 89 |
+
All talks and text are property of TED Conferences LLC.
|
| 90 |
+
|
| 91 |
+
The TED-LIUM corpus was made from audio talks and their transcriptions
|
| 92 |
+
available on the TED website. We have prepared and filtered these data
|
| 93 |
+
in order to train acoustic models to participate to the International
|
| 94 |
+
Workshop on Spoken Language Translation 2011 (the LIUM English/French
|
| 95 |
+
SLT system reached the first rank in the SLT task).
|
| 96 |
+
|
| 97 |
+
Contains 1495 talks and transcripts.
|
| 98 |
+
""",
|
| 99 |
+
citation="""\
|
| 100 |
+
@inproceedings{rousseau2014tedlium2,
|
| 101 |
+
title={Enhancing the {TED-LIUM} Corpus with Selected Data for Language Modeling and More {TED} Talks},
|
| 102 |
+
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
|
| 103 |
+
booktitle={Conference on Language Resources and Evaluation (LREC)},
|
| 104 |
+
year={2014}
|
| 105 |
+
}
|
| 106 |
+
""",
|
| 107 |
+
url="https://www.openslr.org/19/",
|
| 108 |
+
download_urls={
|
| 109 |
+
"train": [
|
| 110 |
+
_DL_URL + os.path.join("TEDLIUM_release2", "train_1.tar.gz"),
|
| 111 |
+
_DL_URL + os.path.join("TEDLIUM_release2", "train_2.tar.gz"),
|
| 112 |
+
],
|
| 113 |
+
"validation": [_DL_URL + os.path.join("TEDLIUM_release2", "dev.tar.gz")],
|
| 114 |
+
"test": [_DL_URL + os.path.join("TEDLIUM_release2", "test.tar.gz")],
|
| 115 |
+
},
|
| 116 |
+
split_paths=[
|
| 117 |
+
(datasets.Split.TRAIN, "train"),
|
| 118 |
+
(datasets.Split.VALIDATION, "dev"),
|
| 119 |
+
(datasets.Split.TEST, "test"),
|
| 120 |
+
],
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
release3 = TedliumReleaseConfig(
|
| 124 |
+
name="release3",
|
| 125 |
+
description="""\
|
| 126 |
+
This is the TED-LIUM corpus release 3, licensed under Creative Commons
|
| 127 |
+
BY-NC-ND 3.0. This is the 'legacy' version of the corpus, in which the dev and test datasets are the same as in
|
| 128 |
+
TED-LIUM 2 (and TED-LIUM 1).
|
| 129 |
|
| 130 |
+
All talks and text are property of TED Conferences LLC.
|
| 131 |
|
| 132 |
+
This new TED-LIUM release was made through a collaboration between the
|
| 133 |
+
Ubiqus company and the LIUM (University of Le Mans, France)
|
|
|
|
| 134 |
|
| 135 |
+
Contents:
|
| 136 |
|
| 137 |
+
- 2351 audio talks in NIST sphere format (SPH), including talks from
|
| 138 |
+
TED-LIUM 2: be careful, same talks but not same audio files (only
|
| 139 |
+
these audio file must be used with the TED-LIUM 3 STM files)
|
| 140 |
+
- 452 hours of audio
|
| 141 |
+
- 2351 aligned automatic transcripts in STM format
|
| 142 |
+
- TEDLIUM 2 dev and test data: 19 TED talks in SPH format with
|
| 143 |
+
corresponding manual transcriptions.
|
| 144 |
+
- Dictionary with pronunciations (159848 entries), same file as the one
|
| 145 |
+
included in TED-LIUM 2
|
| 146 |
+
- Selected monolingual data for language modeling from WMT12 publicly
|
| 147 |
+
available corpora: these files come from the TED-LIUM 2 release, but
|
| 148 |
+
have been modified to get a tokenization more relevant for English
|
| 149 |
+
language
|
| 150 |
|
| 151 |
+
""",
|
| 152 |
+
citation="""\
|
| 153 |
+
@inproceedings{hernandez2018tedlium3,
|
| 154 |
+
title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation},
|
| 155 |
+
author={Hernandez, Fran{\\c{c}}ois and Nguyen, Vincent and Ghannay, Sahar and Tomashenko, Natalia and Est{\\`e}ve, Yannick},
|
| 156 |
+
booktitle={International Conference on Speech and Computer},
|
| 157 |
+
pages={198--208},
|
| 158 |
+
year={2018},
|
| 159 |
+
organization={Springer}
|
| 160 |
+
}
|
| 161 |
+
""",
|
| 162 |
+
url="https://www.openslr.org/51/",
|
| 163 |
+
download_urls={
|
| 164 |
+
"train": [
|
| 165 |
+
_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "train_1.tar.gz"),
|
| 166 |
+
_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "train_2.tar.gz"),
|
| 167 |
+
],
|
| 168 |
+
"validation": [_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "dev.tar.gz")],
|
| 169 |
+
"test": [_DL_URL + os.path.join("TEDLIUM_release3", "legacy", "test.tar.gz")],
|
| 170 |
+
},
|
| 171 |
+
split_paths=[
|
| 172 |
+
(datasets.Split.TRAIN, "train"),
|
| 173 |
+
(datasets.Split.VALIDATION, "dev"),
|
| 174 |
+
(datasets.Split.TEST, "test"),
|
| 175 |
+
],
|
| 176 |
+
)
|
| 177 |
|
| 178 |
+
release3_speaker_adaptation = TedliumReleaseConfig(
|
| 179 |
+
name="release3-speaker-adaptation",
|
| 180 |
+
description="""\
|
| 181 |
+
This is the TED-LIUM corpus release 3, licensed under Creative Commons
|
| 182 |
+
BY-NC-ND 3.0. This is the 'speaker adaptation' version of the corpus, specially designed for experiments on
|
| 183 |
+
speaker adaptation.
|
| 184 |
|
| 185 |
+
All talks and text are property of TED Conferences LLC.
|
| 186 |
+
|
| 187 |
+
This new TED-LIUM release was made through a collaboration between the
|
| 188 |
+
Ubiqus company and the LIUM (University of Le Mans, France)
|
| 189 |
+
""",
|
| 190 |
+
citation="""\
|
| 191 |
+
@inproceedings{hernandez2018tedlium3,
|
| 192 |
+
title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation},
|
| 193 |
+
author={Hernandez, Fran{\\c{c}}ois and Nguyen, Vincent and Ghannay, Sahar and Tomashenko, Natalia and Est{\\`e}ve, Yannick},
|
| 194 |
+
booktitle={International Conference on Speech and Computer},
|
| 195 |
+
pages={198--208},
|
| 196 |
+
year={2018},
|
| 197 |
+
organization={Springer}
|
| 198 |
+
}
|
| 199 |
+
""",
|
| 200 |
+
url="https://www.openslr.org/51/",
|
| 201 |
+
download_urls={
|
| 202 |
+
"train": [
|
| 203 |
+
_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "train_1.tar.gz"),
|
| 204 |
+
_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "train_2.tar.gz"),
|
| 205 |
+
],
|
| 206 |
+
"validation": [_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "dev.tar.gz")],
|
| 207 |
+
"test": [_DL_URL + os.path.join("TEDLIUM_release3", "speaker-adaptation", "test.tar.gz")],
|
| 208 |
+
},
|
| 209 |
+
split_paths=[
|
| 210 |
+
(datasets.Split.TRAIN, "train"),
|
| 211 |
+
(datasets.Split.VALIDATION, "dev"),
|
| 212 |
+
(datasets.Split.TEST, "test"),
|
| 213 |
+
],
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
return [release1, release2, release3, release3_speaker_adaptation]
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
class TedLium(datasets.GeneratorBasedBuilder):
|
| 220 |
+
"""The TED-LIUM corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech."""
|
| 221 |
|
| 222 |
VERSION = datasets.Version("1.1.0")
|
| 223 |
|
| 224 |
+
BUILDER_CONFIGS = _make_builder_configs()
|
| 225 |
|
| 226 |
def _info(self):
|
| 227 |
features = datasets.Features(
|
| 228 |
{
|
| 229 |
+
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 230 |
"text": datasets.Value("string"),
|
| 231 |
+
"speaker_id": datasets.Value("string"),
|
| 232 |
+
"gender": datasets.features.ClassLabel(names=["unknown", "female", "male"]),
|
| 233 |
"file": datasets.Value("string"),
|
| 234 |
"id": datasets.Value("string"),
|
| 235 |
}
|
| 236 |
)
|
| 237 |
return datasets.DatasetInfo(
|
| 238 |
+
description=self.config.description,
|
| 239 |
features=features,
|
| 240 |
supervised_keys=("audio", "text"),
|
| 241 |
+
homepage=self.config.url,
|
| 242 |
license=_LICENSE,
|
| 243 |
+
citation=self.config.citation,
|
| 244 |
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
| 245 |
)
|
| 246 |
|
| 247 |
def _split_generators(self, dl_manager):
|
| 248 |
+
archive_path = dl_manager.download(self.config.download_urls)
|
| 249 |
+
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
|
| 250 |
+
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
|
| 251 |
+
splits = []
|
| 252 |
+
for split, path in self.config.split_paths:
|
| 253 |
+
kwargs = {
|
| 254 |
+
"filepath": [dl_manager.iter_archive(sharded_path) for sharded_path in archive_path[split]],
|
| 255 |
+
"local_extracted_archive": local_extracted_archive.get(split),
|
| 256 |
+
"split_path": path,
|
| 257 |
+
}
|
| 258 |
+
splits.append(datasets.SplitGenerator(name=split, gen_kwargs=kwargs))
|
| 259 |
+
return splits
|
| 260 |
+
|
| 261 |
+
def _generate_examples(self, filepath, local_extracted_archive, split_path):
|
| 262 |
+
"""Generate examples from a TED-LIUM stm file."""
|
| 263 |
+
if local_extracted_archive:
|
| 264 |
+
for local_archive in local_extracted_archive:
|
| 265 |
+
# The stm directory houses the speaker and transcription information in .stm format
|
| 266 |
+
split_dir = os.path.join(local_archive, split_path)
|
| 267 |
+
stm_files = [os.path.join(split_dir, f) for f in os.listdir(split_dir) if f.endswith(".stm")]
|
| 268 |
+
for file in stm_files:
|
| 269 |
+
# the .sph speaker file almost always has the same file name as the .stm file
|
| 270 |
+
speaker_file = Path(file).stem
|
| 271 |
+
audio_file = os.path.join(split_dir, speaker_file + ".sph")
|
| 272 |
+
segment, sampling_rate = sf.read(audio_file, dtype=np.int16)
|
| 273 |
+
with open(file) as f:
|
| 274 |
+
for line in f:
|
| 275 |
+
line = line.strip()
|
| 276 |
+
fn, channel, speaker, start, end, label, transcript = line.split(" ", 6)
|
| 277 |
+
transcript = _maybe_trim_suffix(transcript)
|
| 278 |
+
if speaker_file != fn:
|
| 279 |
+
# handle the case where the stm file does not have the same file name as the transcript
|
| 280 |
+
speaker_file = fn
|
| 281 |
+
audio_file = os.path.join(split_dir, speaker_file + ".sph")
|
| 282 |
+
segment, sampling_rate = sf.read(audio_file, dtype=np.int16)
|
| 283 |
+
samples = _extract_audio_segment(segment, sampling_rate, float(start), float(end))
|
| 284 |
+
key = "-".join([speaker, start, end, label])
|
| 285 |
+
example = {
|
| 286 |
+
"audio": {"path": audio_file, "array": samples, "sampling_rate": sampling_rate},
|
| 287 |
+
"text": transcript,
|
| 288 |
+
"speaker_id": speaker,
|
| 289 |
+
"gender": _parse_gender(label),
|
| 290 |
+
"file": audio_file,
|
| 291 |
+
"id": key,
|
| 292 |
+
}
|
| 293 |
+
yield key, example
|
| 294 |
+
|
| 295 |
+
else:
|
| 296 |
+
audio_data = {}
|
| 297 |
+
transcripts = defaultdict(list)
|
| 298 |
+
for file in filepath:
|
| 299 |
+
for path, f in file:
|
| 300 |
+
if path.endswith(".sph"):
|
| 301 |
+
# get the speaker id
|
| 302 |
+
fn = path.split("/")[-1].strip(".sph")
|
| 303 |
+
# read the audio data from raw byte form and add key-value pair to dict
|
| 304 |
+
audio_data[fn] = sf.read(BytesIO(f.read()), dtype=np.int16)
|
| 305 |
+
elif path.endswith(".stm"):
|
| 306 |
+
for line in f:
|
| 307 |
+
if line:
|
| 308 |
+
line = line.decode("utf-8").strip()
|
| 309 |
+
fn, channel, speaker, start, end, label, transcript = line.split(" ", 6)
|
| 310 |
+
transcript = _maybe_trim_suffix(transcript)
|
| 311 |
+
audio_file = path.replace("stm", "sph")
|
| 312 |
+
key = "-".join([speaker, start, end, label])
|
| 313 |
+
# append metadata information to the dict of transcripts for the associated speaker
|
| 314 |
+
transcripts[fn].append(
|
| 315 |
+
{
|
| 316 |
+
"text": transcript,
|
| 317 |
+
"speaker_id": speaker,
|
| 318 |
+
"gender": _parse_gender(label),
|
| 319 |
+
"file": audio_file,
|
| 320 |
+
"id": key,
|
| 321 |
+
"start": start,
|
| 322 |
+
"end": end,
|
| 323 |
+
"channel": channel,
|
| 324 |
+
"fn": fn,
|
| 325 |
+
}
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
if audio_data and audio_data.keys() == transcripts.keys():
|
| 329 |
+
for fn, speaker in transcripts.items():
|
| 330 |
+
for transcript in speaker:
|
| 331 |
+
segment, sampling_rate = audio_data[transcript["fn"]]
|
| 332 |
+
samples = _extract_audio_segment(
|
| 333 |
+
segment,
|
| 334 |
+
int(transcript["channel"]),
|
| 335 |
+
float(transcript["start"]),
|
| 336 |
+
float(transcript["end"]),
|
| 337 |
+
)
|
| 338 |
+
audio = {"path": transcript["file"], "array": samples, "sampling_rate": sampling_rate}
|
| 339 |
+
key = transcript["id"]
|
| 340 |
+
yield key, {
|
| 341 |
+
"audio": audio,
|
| 342 |
+
"text": transcript["text"],
|
| 343 |
+
"speaker_id": transcript["speaker_id"],
|
| 344 |
+
"gender": transcript["gender"],
|
| 345 |
+
"file": transcript["file"],
|
| 346 |
+
"id": transcript["id"],
|
| 347 |
+
}
|
| 348 |
+
audio_data = {}
|
| 349 |
+
transcripts = defaultdict(list)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def _maybe_trim_suffix(transcript):
|
| 353 |
+
# stm files for the TEDLIUM release 1 train split contain a key (enclosed in
|
| 354 |
+
# parens) at the end.
|
| 355 |
+
splits = transcript.rsplit(" ", 1)
|
| 356 |
+
transcript = splits[0]
|
| 357 |
+
if len(splits) > 1:
|
| 358 |
+
suffix = splits[-1]
|
| 359 |
+
if not suffix.startswith("("):
|
| 360 |
+
transcript += " " + suffix
|
| 361 |
+
return transcript
|
| 362 |
|
| 363 |
|
| 364 |
def _extract_audio_segment(segment, sampling_rate, start_sec, end_sec):
|
| 365 |
"""Extracts segment of audio samples (as an ndarray) from the given segment."""
|
| 366 |
+
# The dataset only contains mono audio.
|
| 367 |
start_sample = int(start_sec * sampling_rate)
|
| 368 |
end_sample = min(int(end_sec * sampling_rate), segment.shape[0])
|
| 369 |
samples = segment[start_sample:end_sample]
|
| 370 |
return samples
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
def _parse_gender(label_str):
|
| 374 |
+
"""Parse gender string from STM "<label>" field."""
|
| 375 |
+
gender = re.split(",|_", label_str)[-1][:-1]
|
| 376 |
+
# Fix inconsistencies in the data.
|
| 377 |
+
if not gender:
|
| 378 |
+
gender = -1 # Missing label.
|
| 379 |
+
elif gender == "<NA": # In TEDLIUM release 3 training data.
|
| 380 |
+
gender = -1 # Missing label.
|
| 381 |
+
elif gender == "F":
|
| 382 |
+
gender = "female"
|
| 383 |
+
elif gender == "M":
|
| 384 |
+
gender = "male"
|
| 385 |
+
return gender
|