trained model 1
Browse files- .gitattributes +1 -0
- README.md +81 -0
- all_results.json +15 -0
- config.json +107 -0
- eval.py +134 -0
- eval_results.json +10 -0
- preprocessor_config.json +3 -3
- pytorch_model.bin +3 -0
- run.sh +3 -3
- run_speech_recognition_ctc.py +6 -6
- runs/Jan29_18-11-09_job-b1f4681b-d20d-47f2-af64-0c1734f4ff64/1643479909.8714664/events.out.tfevents.1643479909.job-b1f4681b-d20d-47f2-af64-0c1734f4ff64.6189.1 +3 -0
- runs/Jan29_18-11-09_job-b1f4681b-d20d-47f2-af64-0c1734f4ff64/events.out.tfevents.1643479909.job-b1f4681b-d20d-47f2-af64-0c1734f4ff64.6189.0 +3 -0
- runs/Jan29_18-11-09_job-b1f4681b-d20d-47f2-af64-0c1734f4ff64/events.out.tfevents.1643497112.job-b1f4681b-d20d-47f2-af64-0c1734f4ff64.6189.2 +3 -0
- train_results.json +8 -0
- trainer_state.json +249 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
|
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
language_model/5gram.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
language_model/5gram.bin filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- hy-AM
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- automatic-speech-recognition
|
| 7 |
+
- mozilla-foundation/common_voice_8_0
|
| 8 |
+
- generated_from_trainer
|
| 9 |
+
datasets:
|
| 10 |
+
- common_voice
|
| 11 |
+
model-index:
|
| 12 |
+
- name: ''
|
| 13 |
+
results: []
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 17 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 18 |
+
|
| 19 |
+
#
|
| 20 |
+
|
| 21 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset.
|
| 22 |
+
It achieves the following results on the evaluation set:
|
| 23 |
+
- Loss: 0.4521
|
| 24 |
+
- Wer: 0.5141
|
| 25 |
+
- Cer: 0.1100
|
| 26 |
+
|
| 27 |
+
## Model description
|
| 28 |
+
|
| 29 |
+
More information needed
|
| 30 |
+
|
| 31 |
+
## Intended uses & limitations
|
| 32 |
+
|
| 33 |
+
More information needed
|
| 34 |
+
|
| 35 |
+
## Training and evaluation data
|
| 36 |
+
|
| 37 |
+
More information needed
|
| 38 |
+
|
| 39 |
+
## Training procedure
|
| 40 |
+
|
| 41 |
+
### Training hyperparameters
|
| 42 |
+
|
| 43 |
+
The following hyperparameters were used during training:
|
| 44 |
+
- learning_rate: 8e-05
|
| 45 |
+
- train_batch_size: 16
|
| 46 |
+
- eval_batch_size: 64
|
| 47 |
+
- seed: 42
|
| 48 |
+
- gradient_accumulation_steps: 8
|
| 49 |
+
- total_train_batch_size: 128
|
| 50 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
| 51 |
+
- lr_scheduler_type: linear
|
| 52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 53 |
+
- training_steps: 1400
|
| 54 |
+
- mixed_precision_training: Native AMP
|
| 55 |
+
|
| 56 |
+
### Training results
|
| 57 |
+
|
| 58 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
| 59 |
+
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
|
| 60 |
+
| 6.1298 | 19.87 | 100 | 3.1204 | 1.0 | 1.0 |
|
| 61 |
+
| 2.7269 | 39.87 | 200 | 0.6200 | 0.7592 | 0.1755 |
|
| 62 |
+
| 1.4643 | 59.87 | 300 | 0.4796 | 0.5921 | 0.1277 |
|
| 63 |
+
| 1.1242 | 79.87 | 400 | 0.4637 | 0.5359 | 0.1145 |
|
| 64 |
+
| 0.9592 | 99.87 | 500 | 0.4521 | 0.5141 | 0.1100 |
|
| 65 |
+
| 0.8704 | 119.87 | 600 | 0.4736 | 0.4914 | 0.1045 |
|
| 66 |
+
| 0.7908 | 139.87 | 700 | 0.5394 | 0.5250 | 0.1124 |
|
| 67 |
+
| 0.7049 | 159.87 | 800 | 0.4822 | 0.4754 | 0.0985 |
|
| 68 |
+
| 0.6299 | 179.87 | 900 | 0.4890 | 0.4809 | 0.1028 |
|
| 69 |
+
| 0.5832 | 199.87 | 1000 | 0.5233 | 0.4813 | 0.1028 |
|
| 70 |
+
| 0.5145 | 219.87 | 1100 | 0.5350 | 0.4781 | 0.0994 |
|
| 71 |
+
| 0.4604 | 239.87 | 1200 | 0.5223 | 0.4715 | 0.0984 |
|
| 72 |
+
| 0.4226 | 259.87 | 1300 | 0.5167 | 0.4625 | 0.0953 |
|
| 73 |
+
| 0.3946 | 279.87 | 1400 | 0.5248 | 0.4614 | 0.0950 |
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
### Framework versions
|
| 77 |
+
|
| 78 |
+
- Transformers 4.17.0.dev0
|
| 79 |
+
- Pytorch 1.10.2+cu102
|
| 80 |
+
- Datasets 1.18.2.dev0
|
| 81 |
+
- Tokenizers 0.11.0
|
all_results.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 279.87,
|
| 3 |
+
"eval_cer": 0.1099645928174001,
|
| 4 |
+
"eval_loss": 0.452116459608078,
|
| 5 |
+
"eval_runtime": 15.4676,
|
| 6 |
+
"eval_samples": 335,
|
| 7 |
+
"eval_samples_per_second": 21.658,
|
| 8 |
+
"eval_steps_per_second": 0.388,
|
| 9 |
+
"eval_wer": 0.5140515222482436,
|
| 10 |
+
"train_loss": 1.2697014454432896,
|
| 11 |
+
"train_runtime": 17182.2968,
|
| 12 |
+
"train_samples": 728,
|
| 13 |
+
"train_samples_per_second": 10.429,
|
| 14 |
+
"train_steps_per_second": 0.081
|
| 15 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-1b",
|
| 3 |
+
"activation_dropout": 0.1,
|
| 4 |
+
"adapter_kernel_size": 3,
|
| 5 |
+
"adapter_stride": 2,
|
| 6 |
+
"add_adapter": false,
|
| 7 |
+
"apply_spec_augment": true,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"Wav2Vec2ForCTC"
|
| 10 |
+
],
|
| 11 |
+
"attention_dropout": 0.0,
|
| 12 |
+
"bos_token_id": 1,
|
| 13 |
+
"classifier_proj_size": 256,
|
| 14 |
+
"codevector_dim": 1024,
|
| 15 |
+
"contrastive_logits_temperature": 0.1,
|
| 16 |
+
"conv_bias": true,
|
| 17 |
+
"conv_dim": [
|
| 18 |
+
512,
|
| 19 |
+
512,
|
| 20 |
+
512,
|
| 21 |
+
512,
|
| 22 |
+
512,
|
| 23 |
+
512,
|
| 24 |
+
512
|
| 25 |
+
],
|
| 26 |
+
"conv_kernel": [
|
| 27 |
+
10,
|
| 28 |
+
3,
|
| 29 |
+
3,
|
| 30 |
+
3,
|
| 31 |
+
3,
|
| 32 |
+
2,
|
| 33 |
+
2
|
| 34 |
+
],
|
| 35 |
+
"conv_stride": [
|
| 36 |
+
5,
|
| 37 |
+
2,
|
| 38 |
+
2,
|
| 39 |
+
2,
|
| 40 |
+
2,
|
| 41 |
+
2,
|
| 42 |
+
2
|
| 43 |
+
],
|
| 44 |
+
"ctc_loss_reduction": "mean",
|
| 45 |
+
"ctc_zero_infinity": false,
|
| 46 |
+
"diversity_loss_weight": 0.1,
|
| 47 |
+
"do_stable_layer_norm": true,
|
| 48 |
+
"eos_token_id": 2,
|
| 49 |
+
"feat_extract_activation": "gelu",
|
| 50 |
+
"feat_extract_dropout": 0.0,
|
| 51 |
+
"feat_extract_norm": "layer",
|
| 52 |
+
"feat_proj_dropout": 0.0,
|
| 53 |
+
"feat_quantizer_dropout": 0.0,
|
| 54 |
+
"final_dropout": 0.0,
|
| 55 |
+
"hidden_act": "gelu",
|
| 56 |
+
"hidden_dropout": 0.0,
|
| 57 |
+
"hidden_size": 1280,
|
| 58 |
+
"initializer_range": 0.02,
|
| 59 |
+
"intermediate_size": 5120,
|
| 60 |
+
"layer_norm_eps": 1e-05,
|
| 61 |
+
"layerdrop": 0.1,
|
| 62 |
+
"mask_feature_length": 64,
|
| 63 |
+
"mask_feature_min_masks": 0,
|
| 64 |
+
"mask_feature_prob": 0.25,
|
| 65 |
+
"mask_time_length": 10,
|
| 66 |
+
"mask_time_min_masks": 2,
|
| 67 |
+
"mask_time_prob": 0.75,
|
| 68 |
+
"model_type": "wav2vec2",
|
| 69 |
+
"num_adapter_layers": 3,
|
| 70 |
+
"num_attention_heads": 16,
|
| 71 |
+
"num_codevector_groups": 2,
|
| 72 |
+
"num_codevectors_per_group": 320,
|
| 73 |
+
"num_conv_pos_embedding_groups": 16,
|
| 74 |
+
"num_conv_pos_embeddings": 128,
|
| 75 |
+
"num_feat_extract_layers": 7,
|
| 76 |
+
"num_hidden_layers": 48,
|
| 77 |
+
"num_negatives": 100,
|
| 78 |
+
"output_hidden_size": 1280,
|
| 79 |
+
"pad_token_id": 41,
|
| 80 |
+
"proj_codevector_dim": 1024,
|
| 81 |
+
"tdnn_dilation": [
|
| 82 |
+
1,
|
| 83 |
+
2,
|
| 84 |
+
3,
|
| 85 |
+
1,
|
| 86 |
+
1
|
| 87 |
+
],
|
| 88 |
+
"tdnn_dim": [
|
| 89 |
+
512,
|
| 90 |
+
512,
|
| 91 |
+
512,
|
| 92 |
+
512,
|
| 93 |
+
1500
|
| 94 |
+
],
|
| 95 |
+
"tdnn_kernel": [
|
| 96 |
+
5,
|
| 97 |
+
3,
|
| 98 |
+
3,
|
| 99 |
+
1,
|
| 100 |
+
1
|
| 101 |
+
],
|
| 102 |
+
"torch_dtype": "float32",
|
| 103 |
+
"transformers_version": "4.17.0.dev0",
|
| 104 |
+
"use_weighted_layer_sum": false,
|
| 105 |
+
"vocab_size": 44,
|
| 106 |
+
"xvector_output_dim": 512
|
| 107 |
+
}
|
eval.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import argparse
|
| 3 |
+
import re
|
| 4 |
+
from typing import Dict
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
| 8 |
+
|
| 9 |
+
from transformers import AutoFeatureExtractor, pipeline, Wav2Vec2ProcessorWithLM
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
| 13 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
| 14 |
+
|
| 15 |
+
log_outputs = args.log_outputs
|
| 16 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
| 17 |
+
|
| 18 |
+
# load metric
|
| 19 |
+
wer = load_metric("wer")
|
| 20 |
+
cer = load_metric("cer")
|
| 21 |
+
|
| 22 |
+
# compute metrics
|
| 23 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
| 24 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
| 25 |
+
|
| 26 |
+
# print & log results
|
| 27 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
| 28 |
+
print(result_str)
|
| 29 |
+
|
| 30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
| 31 |
+
f.write(result_str)
|
| 32 |
+
|
| 33 |
+
# log all results in text file. Possibly interesting for analysis
|
| 34 |
+
if log_outputs is not None:
|
| 35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
| 36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
| 37 |
+
|
| 38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
| 39 |
+
|
| 40 |
+
# mapping function to write output
|
| 41 |
+
def write_to_file(batch, i):
|
| 42 |
+
p.write(f"{i}" + "\n")
|
| 43 |
+
p.write(batch["prediction"] + "\n")
|
| 44 |
+
t.write(f"{i}" + "\n")
|
| 45 |
+
t.write(batch["target"] + "\n")
|
| 46 |
+
|
| 47 |
+
result.map(write_to_file, with_indices=True)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def normalize_text(text: str) -> str:
|
| 51 |
+
"""This function normalizes the target text."""
|
| 52 |
+
|
| 53 |
+
chars_to_ignore_regex = re.compile("[^\sաբգդեզէըթժիլխծկհձղճմյնշոչպջռսվտրցւփքօֆև]")
|
| 54 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
| 55 |
+
text = " ".join(text.split())
|
| 56 |
+
|
| 57 |
+
return text
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def main(args):
|
| 61 |
+
# load dataset
|
| 62 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
| 63 |
+
|
| 64 |
+
# for testing: only process the first two examples as a test
|
| 65 |
+
# dataset = dataset.select(range(10))
|
| 66 |
+
|
| 67 |
+
# load processor
|
| 68 |
+
# feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
| 69 |
+
# sampling_rate = feature_extractor.sampling_rate
|
| 70 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
|
| 71 |
+
|
| 72 |
+
# resample audio
|
| 73 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=processor.feature_extractor.sampling_rate))
|
| 74 |
+
|
| 75 |
+
# load eval pipeline
|
| 76 |
+
if args.device is None:
|
| 77 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
| 78 |
+
asr = pipeline(
|
| 79 |
+
"automatic-speech-recognition", model=args.model_id, device=args.device,
|
| 80 |
+
feature_extractor=processor.feature_extractor, decoder=processor.decoder
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# map function to decode audio
|
| 84 |
+
def map_to_pred(batch):
|
| 85 |
+
prediction = asr(
|
| 86 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
batch["prediction"] = prediction["text"]
|
| 90 |
+
batch["target"] = normalize_text(batch["sentence"])
|
| 91 |
+
return batch
|
| 92 |
+
|
| 93 |
+
# run inference on all examples
|
| 94 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
| 95 |
+
|
| 96 |
+
# compute and log_results
|
| 97 |
+
# do not change function below
|
| 98 |
+
log_results(result, args)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
if __name__ == "__main__":
|
| 102 |
+
parser = argparse.ArgumentParser()
|
| 103 |
+
|
| 104 |
+
parser.add_argument(
|
| 105 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
| 106 |
+
)
|
| 107 |
+
parser.add_argument(
|
| 108 |
+
"--dataset",
|
| 109 |
+
type=str,
|
| 110 |
+
required=True,
|
| 111 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
| 112 |
+
)
|
| 113 |
+
parser.add_argument(
|
| 114 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
| 115 |
+
)
|
| 116 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
| 117 |
+
parser.add_argument(
|
| 118 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
| 119 |
+
)
|
| 120 |
+
parser.add_argument(
|
| 121 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
| 122 |
+
)
|
| 123 |
+
parser.add_argument(
|
| 124 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
| 125 |
+
)
|
| 126 |
+
parser.add_argument(
|
| 127 |
+
"--device",
|
| 128 |
+
type=int,
|
| 129 |
+
default=None,
|
| 130 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
| 131 |
+
)
|
| 132 |
+
args = parser.parse_args()
|
| 133 |
+
|
| 134 |
+
main(args)
|
eval_results.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 279.87,
|
| 3 |
+
"eval_cer": 0.1099645928174001,
|
| 4 |
+
"eval_loss": 0.452116459608078,
|
| 5 |
+
"eval_runtime": 15.4676,
|
| 6 |
+
"eval_samples": 335,
|
| 7 |
+
"eval_samples_per_second": 21.658,
|
| 8 |
+
"eval_steps_per_second": 0.388,
|
| 9 |
+
"eval_wer": 0.5140515222482436
|
| 10 |
+
}
|
preprocessor_config.json
CHANGED
|
@@ -3,8 +3,8 @@
|
|
| 3 |
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
| 4 |
"feature_size": 1,
|
| 5 |
"padding_side": "right",
|
| 6 |
-
"padding_value": 0
|
| 7 |
-
"processor_class": "Wav2Vec2ProcessorWithLM",
|
| 8 |
"return_attention_mask": true,
|
| 9 |
-
"sampling_rate": 16000
|
|
|
|
| 10 |
}
|
|
|
|
| 3 |
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
| 4 |
"feature_size": 1,
|
| 5 |
"padding_side": "right",
|
| 6 |
+
"padding_value": 0,
|
|
|
|
| 7 |
"return_attention_mask": true,
|
| 8 |
+
"sampling_rate": 16000,
|
| 9 |
+
"processor_class": "Wav2Vec2ProcessorWithLM"
|
| 10 |
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8f8978ee6447aa667cea589211c87f8fb8e06cc6854f68043d8ea9c89baaee13
|
| 3 |
+
size 3850538161
|
run.sh
CHANGED
|
@@ -4,6 +4,7 @@ python run_speech_recognition_ctc.py \
|
|
| 4 |
--model_name_or_path="facebook/wav2vec2-xls-r-1b" \
|
| 5 |
--tokenizer_name_or_path="./" \
|
| 6 |
--output_dir="./" \
|
|
|
|
| 7 |
--max_steps 1400 \
|
| 8 |
--per_device_train_batch_size="16" \
|
| 9 |
--per_device_eval_batch_size="64" \
|
|
@@ -18,7 +19,6 @@ python run_speech_recognition_ctc.py \
|
|
| 18 |
--save_steps="100" \
|
| 19 |
--eval_steps="100" \
|
| 20 |
--logging_steps="100" \
|
| 21 |
-
--eval_metrics="wer cer" \
|
| 22 |
--save_total_limit="2" \
|
| 23 |
--freeze_feature_encoder \
|
| 24 |
--layerdrop="0.1" \
|
|
@@ -35,6 +35,6 @@ python run_speech_recognition_ctc.py \
|
|
| 35 |
--do_train --do_eval \
|
| 36 |
--load_best_model_at_end \
|
| 37 |
--report_to all \
|
| 38 |
-
--run_name
|
| 39 |
-
--wandb_project
|
| 40 |
--bnb --tristage_sched
|
|
|
|
| 4 |
--model_name_or_path="facebook/wav2vec2-xls-r-1b" \
|
| 5 |
--tokenizer_name_or_path="./" \
|
| 6 |
--output_dir="./" \
|
| 7 |
+
--overwrite_output_dir \
|
| 8 |
--max_steps 1400 \
|
| 9 |
--per_device_train_batch_size="16" \
|
| 10 |
--per_device_eval_batch_size="64" \
|
|
|
|
| 19 |
--save_steps="100" \
|
| 20 |
--eval_steps="100" \
|
| 21 |
--logging_steps="100" \
|
|
|
|
| 22 |
--save_total_limit="2" \
|
| 23 |
--freeze_feature_encoder \
|
| 24 |
--layerdrop="0.1" \
|
|
|
|
| 35 |
--do_train --do_eval \
|
| 36 |
--load_best_model_at_end \
|
| 37 |
--report_to all \
|
| 38 |
+
--run_name="xlsr-hy-cv-1b-1" \
|
| 39 |
+
--wandb_project="xlsr-hy" \
|
| 40 |
--bnb --tristage_sched
|
run_speech_recognition_ctc.py
CHANGED
|
@@ -192,7 +192,7 @@ class DataTrainingArguments:
|
|
| 192 |
metadata={"help": "A list of characters to remove from the transcripts."},
|
| 193 |
)
|
| 194 |
eval_metrics: List[str] = list_field(
|
| 195 |
-
default=["wer"],
|
| 196 |
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
| 197 |
)
|
| 198 |
max_duration_in_seconds: float = field(
|
|
@@ -521,9 +521,9 @@ def main():
|
|
| 521 |
|
| 522 |
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
| 523 |
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
|
| 528 |
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
| 529 |
if not os.path.isfile(vocab_file):
|
|
@@ -685,8 +685,8 @@ def main():
|
|
| 685 |
# Now save everything to be able to create a single processor later
|
| 686 |
if is_main_process(training_args.local_rank):
|
| 687 |
# save feature extractor, tokenizer and config
|
| 688 |
-
|
| 689 |
-
|
| 690 |
config.save_pretrained(training_args.output_dir)
|
| 691 |
|
| 692 |
try:
|
|
|
|
| 192 |
metadata={"help": "A list of characters to remove from the transcripts."},
|
| 193 |
)
|
| 194 |
eval_metrics: List[str] = list_field(
|
| 195 |
+
default=["wer", "cer"],
|
| 196 |
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
| 197 |
)
|
| 198 |
max_duration_in_seconds: float = field(
|
|
|
|
| 521 |
|
| 522 |
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
| 523 |
|
| 524 |
+
# with training_args.main_process_first():
|
| 525 |
+
# if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
| 526 |
+
# os.remove(vocab_file)
|
| 527 |
|
| 528 |
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
| 529 |
if not os.path.isfile(vocab_file):
|
|
|
|
| 685 |
# Now save everything to be able to create a single processor later
|
| 686 |
if is_main_process(training_args.local_rank):
|
| 687 |
# save feature extractor, tokenizer and config
|
| 688 |
+
# feature_extractor.save_pretrained(training_args.output_dir)
|
| 689 |
+
# tokenizer.save_pretrained(training_args.output_dir)
|
| 690 |
config.save_pretrained(training_args.output_dir)
|
| 691 |
|
| 692 |
try:
|
runs/Jan29_18-11-09_job-b1f4681b-d20d-47f2-af64-0c1734f4ff64/1643479909.8714664/events.out.tfevents.1643479909.job-b1f4681b-d20d-47f2-af64-0c1734f4ff64.6189.1
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dc84b6b9c7e039a23d8ea0de837aed93d5a56a472944aae8a0a5513d579eb0d1
|
| 3 |
+
size 4772
|
runs/Jan29_18-11-09_job-b1f4681b-d20d-47f2-af64-0c1734f4ff64/events.out.tfevents.1643479909.job-b1f4681b-d20d-47f2-af64-0c1734f4ff64.6189.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76b421bd9dff985180762874b1d03e350411b7d1d329716b241946a206fbdddd
|
| 3 |
+
size 12354
|
runs/Jan29_18-11-09_job-b1f4681b-d20d-47f2-af64-0c1734f4ff64/events.out.tfevents.1643497112.job-b1f4681b-d20d-47f2-af64-0c1734f4ff64.6189.2
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fad62cf8a733fcb9bcef04edf23c64c03b02fe5fb12fd25b4744b660931c8729
|
| 3 |
+
size 405
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 279.87,
|
| 3 |
+
"train_loss": 1.2697014454432896,
|
| 4 |
+
"train_runtime": 17182.2968,
|
| 5 |
+
"train_samples": 728,
|
| 6 |
+
"train_samples_per_second": 10.429,
|
| 7 |
+
"train_steps_per_second": 0.081
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": 0.452116459608078,
|
| 3 |
+
"best_model_checkpoint": "./checkpoint-500",
|
| 4 |
+
"epoch": 279.8695652173913,
|
| 5 |
+
"global_step": 1400,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 19.87,
|
| 12 |
+
"learning_rate": 5.6240000000000004e-05,
|
| 13 |
+
"loss": 6.1298,
|
| 14 |
+
"step": 100
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"epoch": 19.87,
|
| 18 |
+
"eval_cer": 1.0,
|
| 19 |
+
"eval_loss": 3.120361804962158,
|
| 20 |
+
"eval_runtime": 16.2509,
|
| 21 |
+
"eval_samples_per_second": 20.614,
|
| 22 |
+
"eval_steps_per_second": 0.369,
|
| 23 |
+
"eval_wer": 1.0,
|
| 24 |
+
"step": 100
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 39.87,
|
| 28 |
+
"learning_rate": 8e-05,
|
| 29 |
+
"loss": 2.7269,
|
| 30 |
+
"step": 200
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 39.87,
|
| 34 |
+
"eval_cer": 0.17546788062721294,
|
| 35 |
+
"eval_loss": 0.6199544668197632,
|
| 36 |
+
"eval_runtime": 17.4782,
|
| 37 |
+
"eval_samples_per_second": 19.167,
|
| 38 |
+
"eval_steps_per_second": 0.343,
|
| 39 |
+
"eval_wer": 0.7591725214676034,
|
| 40 |
+
"step": 200
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"epoch": 59.87,
|
| 44 |
+
"learning_rate": 8e-05,
|
| 45 |
+
"loss": 1.4643,
|
| 46 |
+
"step": 300
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"epoch": 59.87,
|
| 50 |
+
"eval_cer": 0.12771876580677793,
|
| 51 |
+
"eval_loss": 0.4795631468296051,
|
| 52 |
+
"eval_runtime": 15.5884,
|
| 53 |
+
"eval_samples_per_second": 21.49,
|
| 54 |
+
"eval_steps_per_second": 0.385,
|
| 55 |
+
"eval_wer": 0.5921155347384855,
|
| 56 |
+
"step": 300
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"epoch": 79.87,
|
| 60 |
+
"learning_rate": 8e-05,
|
| 61 |
+
"loss": 1.1242,
|
| 62 |
+
"step": 400
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"epoch": 79.87,
|
| 66 |
+
"eval_cer": 0.11451694486595852,
|
| 67 |
+
"eval_loss": 0.463740736246109,
|
| 68 |
+
"eval_runtime": 15.4298,
|
| 69 |
+
"eval_samples_per_second": 21.711,
|
| 70 |
+
"eval_steps_per_second": 0.389,
|
| 71 |
+
"eval_wer": 0.5359094457455114,
|
| 72 |
+
"step": 400
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 99.87,
|
| 76 |
+
"learning_rate": 8e-05,
|
| 77 |
+
"loss": 0.9592,
|
| 78 |
+
"step": 500
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"epoch": 99.87,
|
| 82 |
+
"eval_cer": 0.1099645928174001,
|
| 83 |
+
"eval_loss": 0.452116459608078,
|
| 84 |
+
"eval_runtime": 15.3829,
|
| 85 |
+
"eval_samples_per_second": 21.777,
|
| 86 |
+
"eval_steps_per_second": 0.39,
|
| 87 |
+
"eval_wer": 0.5140515222482436,
|
| 88 |
+
"step": 500
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"epoch": 119.87,
|
| 92 |
+
"learning_rate": 8e-05,
|
| 93 |
+
"loss": 0.8704,
|
| 94 |
+
"step": 600
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 119.87,
|
| 98 |
+
"eval_cer": 0.10450177035913,
|
| 99 |
+
"eval_loss": 0.4736480712890625,
|
| 100 |
+
"eval_runtime": 15.4613,
|
| 101 |
+
"eval_samples_per_second": 21.667,
|
| 102 |
+
"eval_steps_per_second": 0.388,
|
| 103 |
+
"eval_wer": 0.49141295862607337,
|
| 104 |
+
"step": 600
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"epoch": 139.87,
|
| 108 |
+
"learning_rate": 8e-05,
|
| 109 |
+
"loss": 0.7908,
|
| 110 |
+
"step": 700
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"epoch": 139.87,
|
| 114 |
+
"eval_cer": 0.11244309559939301,
|
| 115 |
+
"eval_loss": 0.539383053779602,
|
| 116 |
+
"eval_runtime": 15.4463,
|
| 117 |
+
"eval_samples_per_second": 21.688,
|
| 118 |
+
"eval_steps_per_second": 0.388,
|
| 119 |
+
"eval_wer": 0.5249804839968775,
|
| 120 |
+
"step": 700
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"epoch": 159.87,
|
| 124 |
+
"learning_rate": 6.936e-05,
|
| 125 |
+
"loss": 0.7049,
|
| 126 |
+
"step": 800
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"epoch": 159.87,
|
| 130 |
+
"eval_cer": 0.09848254931714719,
|
| 131 |
+
"eval_loss": 0.48218029737472534,
|
| 132 |
+
"eval_runtime": 15.323,
|
| 133 |
+
"eval_samples_per_second": 21.863,
|
| 134 |
+
"eval_steps_per_second": 0.392,
|
| 135 |
+
"eval_wer": 0.47540983606557374,
|
| 136 |
+
"step": 800
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 179.87,
|
| 140 |
+
"learning_rate": 5.850285714285715e-05,
|
| 141 |
+
"loss": 0.6299,
|
| 142 |
+
"step": 900
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 179.87,
|
| 146 |
+
"eval_cer": 0.1028325746079919,
|
| 147 |
+
"eval_loss": 0.48903265595436096,
|
| 148 |
+
"eval_runtime": 15.3742,
|
| 149 |
+
"eval_samples_per_second": 21.79,
|
| 150 |
+
"eval_steps_per_second": 0.39,
|
| 151 |
+
"eval_wer": 0.4808743169398907,
|
| 152 |
+
"step": 900
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"epoch": 199.87,
|
| 156 |
+
"learning_rate": 4.76457142857143e-05,
|
| 157 |
+
"loss": 0.5832,
|
| 158 |
+
"step": 1000
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 199.87,
|
| 162 |
+
"eval_cer": 0.10278199291856348,
|
| 163 |
+
"eval_loss": 0.5233051180839539,
|
| 164 |
+
"eval_runtime": 15.4506,
|
| 165 |
+
"eval_samples_per_second": 21.682,
|
| 166 |
+
"eval_steps_per_second": 0.388,
|
| 167 |
+
"eval_wer": 0.4812646370023419,
|
| 168 |
+
"step": 1000
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"epoch": 219.87,
|
| 172 |
+
"learning_rate": 3.6788571428571434e-05,
|
| 173 |
+
"loss": 0.5145,
|
| 174 |
+
"step": 1100
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"epoch": 219.87,
|
| 178 |
+
"eval_cer": 0.09939301972685888,
|
| 179 |
+
"eval_loss": 0.5349759459495544,
|
| 180 |
+
"eval_runtime": 15.4699,
|
| 181 |
+
"eval_samples_per_second": 21.655,
|
| 182 |
+
"eval_steps_per_second": 0.388,
|
| 183 |
+
"eval_wer": 0.4781420765027322,
|
| 184 |
+
"step": 1100
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 239.87,
|
| 188 |
+
"learning_rate": 2.5931428571428576e-05,
|
| 189 |
+
"loss": 0.4604,
|
| 190 |
+
"step": 1200
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"epoch": 239.87,
|
| 194 |
+
"eval_cer": 0.09838138593829034,
|
| 195 |
+
"eval_loss": 0.5222976803779602,
|
| 196 |
+
"eval_runtime": 15.1676,
|
| 197 |
+
"eval_samples_per_second": 22.087,
|
| 198 |
+
"eval_steps_per_second": 0.396,
|
| 199 |
+
"eval_wer": 0.4715066354410617,
|
| 200 |
+
"step": 1200
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 259.87,
|
| 204 |
+
"learning_rate": 1.5074285714285721e-05,
|
| 205 |
+
"loss": 0.4226,
|
| 206 |
+
"step": 1300
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 259.87,
|
| 210 |
+
"eval_cer": 0.0952959028831563,
|
| 211 |
+
"eval_loss": 0.5167204737663269,
|
| 212 |
+
"eval_runtime": 15.5392,
|
| 213 |
+
"eval_samples_per_second": 21.558,
|
| 214 |
+
"eval_steps_per_second": 0.386,
|
| 215 |
+
"eval_wer": 0.46252927400468385,
|
| 216 |
+
"step": 1300
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"epoch": 279.87,
|
| 220 |
+
"learning_rate": 4.217142857142858e-06,
|
| 221 |
+
"loss": 0.3946,
|
| 222 |
+
"step": 1400
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"epoch": 279.87,
|
| 226 |
+
"eval_cer": 0.09504299443601416,
|
| 227 |
+
"eval_loss": 0.5248004794120789,
|
| 228 |
+
"eval_runtime": 15.5024,
|
| 229 |
+
"eval_samples_per_second": 21.61,
|
| 230 |
+
"eval_steps_per_second": 0.387,
|
| 231 |
+
"eval_wer": 0.4613583138173302,
|
| 232 |
+
"step": 1400
|
| 233 |
+
},
|
| 234 |
+
{
|
| 235 |
+
"epoch": 279.87,
|
| 236 |
+
"step": 1400,
|
| 237 |
+
"total_flos": 1.252060110838857e+20,
|
| 238 |
+
"train_loss": 1.2697014454432896,
|
| 239 |
+
"train_runtime": 17182.2968,
|
| 240 |
+
"train_samples_per_second": 10.429,
|
| 241 |
+
"train_steps_per_second": 0.081
|
| 242 |
+
}
|
| 243 |
+
],
|
| 244 |
+
"max_steps": 1400,
|
| 245 |
+
"num_train_epochs": 280,
|
| 246 |
+
"total_flos": 1.252060110838857e+20,
|
| 247 |
+
"trial_name": null,
|
| 248 |
+
"trial_params": null
|
| 249 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86c9d49bcd1768ee2043ea2c5e88a280c8d1fe28001131ac6b51202415414f57
|
| 3 |
+
size 3055
|