## taken from https://github.com/davisvideochallenge/davis2017-evaluation/blob/master/davis2017/metrics.py import math import numpy as np import cv2 def db_eval_iou(annotation, segmentation, void_pixels=None): """Compute region similarity as the Jaccard Index. Args: annotation (ndarray): binary annotation map. Shape: [n_frames,H,W] or [H,W] segmentation (ndarray): binary segmentation map. The same shape as `annotation`. void_pixels (ndarray): optional mask with void pixels. The same shape as void_pixels. Return: jaccard (float | ndarray): region similarity. Shape: [n_frames] or scalar. """ assert ( annotation.shape == segmentation.shape ), f"Annotation({annotation.shape}) and segmentation:{segmentation.shape} dimensions do not match." annotation = annotation.astype(bool) segmentation = segmentation.astype(bool) if void_pixels is not None: assert ( annotation.shape == void_pixels.shape ), f"Annotation({annotation.shape}) and void pixels:{void_pixels.shape} dimensions do not match." void_pixels = void_pixels.astype(bool) else: void_pixels = np.zeros_like(segmentation) # Intersection between all sets inters = np.sum((segmentation & annotation) & np.logical_not(void_pixels), axis=(-2, -1)) union = np.sum((segmentation | annotation) & np.logical_not(void_pixels), axis=(-2, -1)) j = inters / union if j.ndim == 0: j = 1 if np.isclose(union, 0) else j else: j[np.isclose(union, 0)] = 1 return j def db_eval_boundary(annotation, segmentation, void_pixels=None, bound_th=0.008): assert annotation.shape == segmentation.shape if void_pixels is not None: assert annotation.shape == void_pixels.shape if annotation.ndim == 3: n_frames = annotation.shape[0] f_res = np.zeros(n_frames) for frame_id in range(n_frames): void_pixels_frame = None if void_pixels is None else void_pixels[frame_id, :, :] f_res[frame_id] = f_measure( segmentation[frame_id, :, :], annotation[frame_id, :, :], void_pixels_frame, bound_th=bound_th, ) elif annotation.ndim == 2: f_res = f_measure(segmentation, annotation, void_pixels, bound_th=bound_th) else: raise ValueError( f"db_eval_boundary does not support tensors with {annotation.ndim} dimensions" ) return f_res def f_measure(foreground_mask, gt_mask, void_pixels=None, bound_th=0.008): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. void_pixels (ndarray): optional mask with void pixels Returns: F (float): boundaries F-measure """ assert np.atleast_3d(foreground_mask).shape[2] == 1 if void_pixels is not None: void_pixels = void_pixels.astype(bool) else: void_pixels = np.zeros_like(foreground_mask).astype(bool) bound_pix = ( bound_th if bound_th >= 1 else np.ceil(bound_th * np.linalg.norm(foreground_mask.shape)) ) # Get the pixel boundaries of both masks fg_boundary = _seg2bmap(foreground_mask * np.logical_not(void_pixels)) gt_boundary = _seg2bmap(gt_mask * np.logical_not(void_pixels)) from skimage.morphology import disk # fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) fg_dil = cv2.dilate(fg_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) gt_dil = cv2.dilate(gt_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) return F def _seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin January 2003 """ seg = seg.astype(bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not ( width > w | height > h | abs(ar1 - ar2) > 0.01 ), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for y in range(h): if b[y, x]: j = 1 + math.floor((y - 1) + height / h) i = 1 + math.floor((x - 1) + width / h) bmap[j, i] = 1 return bmap def compute_size_boundry_centroid(binary_mask): is_empty = not np.any(binary_mask) H, W = binary_mask.shape if is_empty: return (0, 0), (H//2, W//2), (W//2, W//2, H//2, H//2) else: y, x = np.where(binary_mask == True) left_boundary = np.min(x) right_boundary = np.max(x) top_boundary = np.min(y) bottom_boundary = np.max(y) centroid_x = int(left_boundary + right_boundary) // 2 centroid_y = int(top_boundary + bottom_boundary) // 2 width, height = right_boundary - left_boundary + 1, bottom_boundary - top_boundary + 1 return (width, height), (centroid_x, centroid_y), (left_boundary, right_boundary, top_boundary, bottom_boundary) def crop_mask(mask1, mask2): """ crop a pair of masks according to the size of the larger mask """ assert (mask1.shape == mask2.shape ), f"Annotation({mask1.shape}) and segmentation:{mask2.shape} dimensions do not match." mask1 = np.pad(mask1, ((mask1.shape[0], mask1.shape[0]), (mask1.shape[0], mask1.shape[0])), mode='constant', constant_values=False) mask2 = np.pad(mask2, ((mask2.shape[0], mask2.shape[0]), (mask2.shape[0], mask2.shape[0])), mode='constant', constant_values=False) size_1, centroid_1, boundary_1 = compute_size_boundry_centroid(mask1) size_2, centroid_2, boundary_2 = compute_size_boundry_centroid(mask2) width, height = max(size_1[0], size_2[0]), max(size_1[1], size_2[1]) # print(f"Crop Width: {width}, Crop Height: {height}") compact_mask_1 = mask1[centroid_1[1] - height//2:centroid_1[1] + height//2 + 1, centroid_1[0] - width//2:centroid_1[0] + width//2 + 1] compact_mask_2 = mask2[centroid_2[1] - height//2:centroid_2[1] + height//2 + 1, centroid_2[0] - width//2:centroid_2[0] + width//2 + 1] return (size_1, size_2), (centroid_1, centroid_2), (compact_mask_1, compact_mask_2) def getMidDist(gt_mask, pred_mask): gt_contours, _ = cv2.findContours(gt_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) pred_contours, _ = cv2.findContours(pred_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) try: gt_bigc = max(gt_contours, key = cv2.contourArea) pred_bigc = max(pred_contours, key = cv2.contourArea) except: return -1 gt_mid = gt_bigc.mean(axis=0)[0] pred_mid = pred_bigc.mean(axis=0)[0] return np.linalg.norm(gt_mid - pred_mid) def getMidDistNorm(gt_mask, pred_mask): H, W = gt_mask.shape[:2] mdist = getMidDist(gt_mask, pred_mask) return mdist / np.sqrt(H**2 + W**2) def getMidBinning(gt_mask, pred_mask, bin_size=5): H, W = gt_mask.shape gt_contours, _ = cv2.findContours(gt_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) pred_contours, _ = cv2.findContours(pred_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) try: gt_bigc = max(gt_contours, key = cv2.contourArea) pred_bigc = max(pred_contours, key = cv2.contourArea) except: return -1 gt_mid = gt_bigc.mean(axis=0)[0] pred_mid = pred_bigc.mean(axis=0)[0] gt_x, gt_y = gt_mid.round() pred_x, pred_y = pred_mid.round() gt_bin_x, gt_bin_y = gt_x // bin_size, gt_y // bin_size pred_bin_x, pred_bin_y = pred_x // bin_size, pred_y // bin_size return (gt_bin_x == pred_bin_x) and (gt_bin_y == pred_bin_y)