Update README.md
Browse files
README.md
CHANGED
|
@@ -13,10 +13,10 @@ base_model:
|
|
| 13 |
- MiniMaxAI/MiniMax-M2
|
| 14 |
---
|
| 15 |
|
| 16 |
-
# THRIFT — Targeted Reduction for Inference and Fine-Tuning
|
| 17 |
|
| 18 |

|
| 19 |
|
|
|
|
| 20 |
|
| 21 |
A performance-optimized variant of the base model that delivers faster responses and lower memory usage while preserving quality for everyday tasks, developed by VibeStud.io.
|
| 22 |
|
|
@@ -181,184 +181,97 @@ This model is derived from MiniMax-M2 and distributed under the MIT License [htt
|
|
| 181 |
|
| 182 |
Model conversion and HF Transformers code by @Qubitum at ModelCloud.
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
| :---- | ----: | ----: |
|
| 279 |
-
| MiniMax-M2-BF16 | 92.72% | 1,319 |
|
| 280 |
-
| MiniMax-M2-THRIFT | 🔄 Coming Soon | 1,319 |
|
| 281 |
-
|
| 282 |
-
**MATH-500 Results**
|
| 283 |
-
|
| 284 |
-
| Model | Overall | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
|
| 285 |
-
| :---- | ----: | ----: | ----: | ----: | ----: | ----: |
|
| 286 |
-
| MiniMax-M2-BF16 | 87.2% | 90.7% | 95.56% | 82.86% | 85.16% | 85.82% |
|
| 287 |
-
| MiniMax-M2-THRIFT | 🔄 Coming Soon | 🔄 | 🔄 | 🔄 | 🔄 | 🔄 |
|
| 288 |
-
|
| 289 |
-
### 4\) LiveCodeBench (Live Coding Problems)
|
| 290 |
-
|
| 291 |
-
| Model | pass@1 | Problems | Status |
|
| 292 |
-
| :---- | ----: | ----: | :---- |
|
| 293 |
-
| **MiniMax-M2-BF16** | **35.71%** | 182 | ✅ Complete |
|
| 294 |
-
| **MiniMax-M2-THRIFT** | 🔄 Coming Soon | 182 | ⏳ Not Started Yet |
|
| 295 |
-
|
| 296 |
-
---
|
| 297 |
-
|
| 298 |
-
## 📈 Analysis (Preliminary)
|
| 299 |
-
|
| 300 |
-
### Key Findings
|
| 301 |
-
|
| 302 |
-
**MMLU Performance Drop**
|
| 303 |
-
|
| 304 |
-
* THRIFT-BF16 shows **\-5.44%** overall MMLU drop
|
| 305 |
-
* Largest drop: **arc\_challenge (-12.20%)**
|
| 306 |
-
* Smallest drop: **winogrande (-1.58%)**
|
| 307 |
-
* **RTE improved by \+4.69%** 🎉
|
| 308 |
-
|
| 309 |
-
**Subject-Specific Performance**
|
| 310 |
-
|
| 311 |
-
* Best preservation: **Social Sciences (-3.18%)**
|
| 312 |
-
* Most degraded: **Other (-7.02%)**
|
| 313 |
-
* STEM: **Moderate drop (-3.30%)**
|
| 314 |
-
|
| 315 |
-
**Compression Trade-off**
|
| 316 |
-
|
| 317 |
-
* THRIFT-BF16 (compressed) vs BF16 (base)
|
| 318 |
-
* Average accuracy loss: **\~4–5%**
|
| 319 |
-
* Expected for compressed/quantized models
|
| 320 |
-
|
| 321 |
-
**MMLU Category Breakdown**
|
| 322 |
-
|
| 323 |
-
| Category | BF16 (Base) | THRIFT-BF16 | Difference | Status |
|
| 324 |
-
| :---- | ----: | ----: | ----: | :---- |
|
| 325 |
-
| High School Government | 97.93% | 94.82% | \-3.11% | ✅ Still Excellent |
|
| 326 |
-
| High School Psychology | 95.41% | 93.58% | \-1.83% | ✅ Well Preserved |
|
| 327 |
-
| Marketing | 95.73% | 91.88% | \-3.85% | ✅ Good |
|
| 328 |
-
| Professional Medicine | 92.28% | 79.78% | \-12.50% | ⚠️ Notable Drop |
|
| 329 |
-
| Clinical Knowledge | 92.83% | 85.66% | \-7.17% | ⚠️ Moderate Drop |
|
| 330 |
-
|
| 331 |
-
---
|
| 332 |
-
|
| 333 |
-
## Benchmarks
|
| 334 |
-
|
| 335 |
-
Coming soon.
|
| 336 |
-
|
| 337 |
-
## Research paper
|
| 338 |
-
|
| 339 |
-
Coming soon.
|
| 340 |
-
|
| 341 |
-
---
|
| 342 |
-
|
| 343 |
-
## License
|
| 344 |
-
|
| 345 |
-
This model is derived from MiniMax-M2 and distributed under the MIT License [http://github.com/MiniMax-AI/MiniMax-M2/blob/main/LICENSE](http://github.com/MiniMax-AI/MiniMax-M2/blob/main/LICENSE)
|
| 346 |
-
|
| 347 |
-
---
|
| 348 |
-
|
| 349 |
-
## Credits
|
| 350 |
-
|
| 351 |
-
Model conversion and HF Transformers code by @Qubitum at ModelCloud.
|
| 352 |
-
|
| 353 |
-
A special thanks to Cerebras for their contributions and innovations.
|
| 354 |
-
|
| 355 |
-
Positive references to related work:
|
| 356 |
-
* Alibaba Cloud Computing — [https://arxiv.org/html/2511.01354v1](https://arxiv.org/html/2511.01354v1)
|
| 357 |
-
* Cerebras — [https://arxiv.org/abs/2510.13999](https://arxiv.org/abs/2510.13999)
|
| 358 |
-
* QLoRA — [https://arxiv.org/abs/2307.02973](https://arxiv.org/abs/2307.02973)
|
| 359 |
-
* SparseGPT ([https://arxiv.org/abs/2301.00774](https://arxiv.org/abs/2301.00774))
|
| 360 |
-
* Wanda ([https://arxiv.org/abs/2306.11695](https://arxiv.org/abs/2306.11695))
|
| 361 |
-
* LLM-Pruner ([https://arxiv.org/abs/2305.11627](https://arxiv.org/abs/2305.11627))
|
| 362 |
-
* Sheared-LLaMA ([https://arxiv.org/abs/2310.06694](https://arxiv.org/abs/2310.06694))
|
| 363 |
-
* Wanda++ (2025):([https://arxiv.org/abs/2503.04992](https://arxiv.org/abs/2503.04992))
|
| 364 |
-
* Týr-the-Pruner ([https://arxiv.org/abs/2503.09657](https://arxiv.org/abs/2503.09657))
|
|
|
|
| 13 |
- MiniMaxAI/MiniMax-M2
|
| 14 |
---
|
| 15 |
|
|
|
|
| 16 |
|
| 17 |

|
| 18 |
|
| 19 |
+
# THRIFT — Targeted Reduction for Inference and Fine-Tuning
|
| 20 |
|
| 21 |
A performance-optimized variant of the base model that delivers faster responses and lower memory usage while preserving quality for everyday tasks, developed by VibeStud.io.
|
| 22 |
|
|
|
|
| 181 |
|
| 182 |
Model conversion and HF Transformers code by @Qubitum at ModelCloud.
|
| 183 |
|
| 184 |
+
## **References (BibTeX)**
|
| 185 |
+
|
| 186 |
+
```
|
| 187 |
+
@article{cai2025thinking,
|
| 188 |
+
title = {Thinking with DistilQwen: A Tale of Four Distilled Reasoning and Reward Model Series},
|
| 189 |
+
author = {Cai, Wenrui and Wang, Chengyu and Yan, Junbing and Huang, Jun and Fang, Xiangzhong},
|
| 190 |
+
journal = {arXiv preprint arXiv:2511.01354},
|
| 191 |
+
year = {2025},
|
| 192 |
+
eprinttype = {arXiv},
|
| 193 |
+
eprint = {2511.01354},
|
| 194 |
+
primaryclass = {cs.CL},
|
| 195 |
+
institution = {Shanghai Jiao Tong University and Alibaba Cloud Computing},
|
| 196 |
+
note = {License: arXiv.org perpetual non-exclusive license}
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
@misc{lasby-reap,
|
| 200 |
+
title = {{REAP the Experts: Why Pruning Prevails for One-Shot MoE compression}},
|
| 201 |
+
author = {Lasby, Mike and Lazarevich, Ivan and Sinnadurai, Nish and Lie, Sean and Ioannou, Yani and Thangarasa, Vithursan},
|
| 202 |
+
year = {2025},
|
| 203 |
+
publisher = {arXiv},
|
| 204 |
+
note = {arXiv:2510.13999v1 [cs]},
|
| 205 |
+
url = {https://arxiv.org/abs/2510.13999v1},
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
@article{yang2025wanda++,
|
| 209 |
+
title = {Wanda++: Pruning Large Language Models via Regional Gradients},
|
| 210 |
+
author = {Yang, Yifan and Zhen, Kai and Ganesh, Bhavana and Galstyan, Aram and Huybrechts, Goeric and M{"u}ller, Markus and K{"u}bler, Jonas M. and Swaminathan, Rupak Vignesh and Mouchtaris, Athanasios and Bodapati, Sravan Babu and Susanj, Nathan and Zhang, Zheng and FitzGerald, Jack and Kumar, Abhishek},
|
| 211 |
+
journal = {arXiv preprint arXiv:2503.04992},
|
| 212 |
+
year = {2025},
|
| 213 |
+
eprinttype = {arXiv},
|
| 214 |
+
eprint = {2503.04992},
|
| 215 |
+
primaryclass = {cs.CL}
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
@article{li2025tyr,
|
| 219 |
+
title = {Týr-the-Pruner: Structural Pruning LLMs via Global Sparsity Distribution Optimization},
|
| 220 |
+
author = {Li, G. and Xu, Yixing and Li, Zeping and Liu, Ji and Yin, Xuanwu and Li, Dong and Barsoum, Emad},
|
| 221 |
+
journal = {arXiv preprint arXiv:2503.09657},
|
| 222 |
+
year = {2025},
|
| 223 |
+
eprinttype = {arXiv},
|
| 224 |
+
eprint = {2503.09657},
|
| 225 |
+
primaryclass = {cs.CL}
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
@article{xia2023sheared,
|
| 229 |
+
title = {Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning},
|
| 230 |
+
author = {Xia, Mengzhou and Gao, Tianyu and Zeng, Zhiyuan and Chen, Danqi},
|
| 231 |
+
journal = {arXiv preprint arXiv:2310.06694},
|
| 232 |
+
year = {2023},
|
| 233 |
+
eprinttype = {arXiv},
|
| 234 |
+
eprint = {2310.06694},
|
| 235 |
+
primaryclass = {cs.CL}
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
@article{ma2023llmpruner,
|
| 239 |
+
title = {LLM-Pruner: On the Structural Pruning of Large Language Models},
|
| 240 |
+
author = {Ma, Xinyin and Fang, Gongfan and Wang, Xinchao},
|
| 241 |
+
journal = {arXiv preprint arXiv:2305.11627},
|
| 242 |
+
year = {2023},
|
| 243 |
+
eprinttype = {arXiv},
|
| 244 |
+
eprint = {2305.11627},
|
| 245 |
+
primaryclass = {cs.CL}
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
@article{yang2023wanda,
|
| 249 |
+
title = {Wanda: Pruning by Weights and Activation-based Discriminant Analysis},
|
| 250 |
+
author = {Yang, Yifan and Ganesh, Bhavana and Galstyan, Aram and Huybrechts, Goeric and M{"u}ller, Markus and Kübler, Jonas M. and Swaminathan, Rupak Vignesh and Mouchtaris, Athanasios and Bodapati, Sravan Babu and Zhang, Zheng and FitzGerald, Jack and Kumar, Abhishek},
|
| 251 |
+
journal = {arXiv preprint arXiv:2306.11695},
|
| 252 |
+
year = {2023},
|
| 253 |
+
eprinttype = {arXiv},
|
| 254 |
+
eprint = {2306.11695},
|
| 255 |
+
primaryclass = {cs.CL}
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
@article{frantar2023sparsegpt,
|
| 259 |
+
title = {SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot},
|
| 260 |
+
author = {Frantar, Elias and Alistarh, Dan},
|
| 261 |
+
journal = {arXiv preprint arXiv:2301.00774},
|
| 262 |
+
year = {2023},
|
| 263 |
+
eprinttype = {arXiv},
|
| 264 |
+
eprint = {2301.00774},
|
| 265 |
+
primaryclass = {cs.CL}
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
@article{dettmers2023qlora,
|
| 269 |
+
title = {QLoRA: Efficient Finetuning of Quantized LLMs},
|
| 270 |
+
author = {Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
|
| 271 |
+
journal = {arXiv preprint arXiv:2307.02973},
|
| 272 |
+
year = {2023},
|
| 273 |
+
eprinttype = {arXiv},
|
| 274 |
+
eprint = {2307.02973},
|
| 275 |
+
primaryclass = {cs.CL}
|
| 276 |
+
}
|
| 277 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|