|
|
import pandas as pd |
|
|
import numpy as np |
|
|
from statsmodels.tsa.arima.model import ARIMA |
|
|
from sklearn.preprocessing import MinMaxScaler |
|
|
from tensorflow.keras.models import Sequential |
|
|
from tensorflow.keras.layers import LSTM, Dense |
|
|
|
|
|
def arima_forecast(ts_data, order=(5,1,0), steps=5): |
|
|
""" |
|
|
ts_data: list of historical stock prices |
|
|
steps: number of future steps to forecast |
|
|
""" |
|
|
ts_series = pd.Series(ts_data) |
|
|
model = ARIMA(ts_series, order=order) |
|
|
model_fit = model.fit() |
|
|
forecast = model_fit.forecast(steps=steps) |
|
|
return forecast.tolist() |
|
|
|
|
|
def lstm_forecast(ts_data, look_back=60, steps=5, epochs=20): |
|
|
""" |
|
|
ts_data: list of historical stock prices |
|
|
steps: number of future steps to forecast |
|
|
Automatically adjusts look_back if input is shorter than look_back. |
|
|
""" |
|
|
|
|
|
if len(ts_data) < look_back + 1: |
|
|
look_back = max(1, len(ts_data) - 1) |
|
|
|
|
|
|
|
|
scaler = MinMaxScaler(feature_range=(0, 1)) |
|
|
scaled_data = scaler.fit_transform(np.array(ts_data).reshape(-1,1)) |
|
|
|
|
|
|
|
|
def create_sequences(dataset, look_back): |
|
|
X, Y = [], [] |
|
|
for i in range(len(dataset) - look_back): |
|
|
X.append(dataset[i:(i+look_back), 0]) |
|
|
Y.append(dataset[i + look_back, 0]) |
|
|
return np.array(X), np.array(Y) |
|
|
|
|
|
X, y = create_sequences(scaled_data, look_back) |
|
|
|
|
|
|
|
|
X = np.reshape(X, (X.shape[0], X.shape[1], 1)) |
|
|
y = y |
|
|
|
|
|
|
|
|
model = Sequential() |
|
|
model.add(LSTM(50, return_sequences=True, input_shape=(look_back,1))) |
|
|
model.add(LSTM(50)) |
|
|
model.add(Dense(1)) |
|
|
model.compile(optimizer='adam', loss='mean_squared_error') |
|
|
|
|
|
|
|
|
model.fit(X, y, epochs=epochs, batch_size=32, verbose=0) |
|
|
|
|
|
|
|
|
last_seq = scaled_data[-look_back:].reshape(1, look_back, 1) |
|
|
predictions = [] |
|
|
|
|
|
for _ in range(steps): |
|
|
pred = model.predict(last_seq, verbose=0) |
|
|
predictions.append(pred[0,0]) |
|
|
|
|
|
pred_reshaped = pred.reshape(1, 1, 1) |
|
|
last_seq = np.concatenate([last_seq[:,1:,:], pred_reshaped], axis=1) |
|
|
|
|
|
predictions = scaler.inverse_transform(np.array(predictions).reshape(-1,1)) |
|
|
return predictions.flatten().tolist() |
|
|
|
|
|
def infer(model_type: str, input_data: list, steps: int = 5): |
|
|
""" |
|
|
model_type: 'arima' or 'lstm' |
|
|
input_data: list of recent stock prices |
|
|
steps: number of future days to forecast |
|
|
""" |
|
|
if model_type.lower() == 'arima': |
|
|
return arima_forecast(input_data, steps=steps) |
|
|
elif model_type.lower() == 'lstm': |
|
|
return lstm_forecast(input_data, steps=steps) |
|
|
else: |
|
|
return {"error": "Invalid model_type. Use 'arima' or 'lstm'."} |
|
|
|