upload registration code
Browse files- configuration_dolphin.py +218 -0
- modeling_dolphin.py +735 -0
configuration_dolphin.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Qwen2 model configuration"""
|
| 16 |
+
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
# We can also consider to pass the encoder config dict to the Qwen2Config config as well.
|
| 23 |
+
encoder_config_dict = {
|
| 24 |
+
"_name_or_path": "alexchen4ai/Qwen2-0.5B",
|
| 25 |
+
"add_cross_attention": False,
|
| 26 |
+
"architectures": ["Qwen2ForCausalLM"],
|
| 27 |
+
"attention_dropout": 0.0,
|
| 28 |
+
"bad_words_ids": None,
|
| 29 |
+
"begin_suppress_tokens": None,
|
| 30 |
+
"bos_token_id": 151643,
|
| 31 |
+
"chunk_size_feed_forward": 0,
|
| 32 |
+
"cross_attention_hidden_size": None,
|
| 33 |
+
"decoder_start_token_id": None,
|
| 34 |
+
"diversity_penalty": 0.0,
|
| 35 |
+
"do_sample": False,
|
| 36 |
+
"early_stopping": False,
|
| 37 |
+
"encoder_config": None,
|
| 38 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 39 |
+
"eos_token_id": 151643,
|
| 40 |
+
"exponential_decay_length_penalty": None,
|
| 41 |
+
"finetuning_task": None,
|
| 42 |
+
"forced_bos_token_id": None,
|
| 43 |
+
"forced_eos_token_id": None,
|
| 44 |
+
"hidden_act": "silu",
|
| 45 |
+
"hidden_size": 896,
|
| 46 |
+
"id2label": {"0": "LABEL_0", "1": "LABEL_1"},
|
| 47 |
+
"initializer_range": 0.02,
|
| 48 |
+
"intermediate_size": 4864,
|
| 49 |
+
"is_decoder": False,
|
| 50 |
+
"is_encoder_decoder": False,
|
| 51 |
+
"label2id": {"LABEL_0": 0, "LABEL_1": 1},
|
| 52 |
+
"length_penalty": 1.0,
|
| 53 |
+
"max_length": 20,
|
| 54 |
+
"max_position_embeddings": 131072,
|
| 55 |
+
"max_window_layers": 24,
|
| 56 |
+
"min_length": 0,
|
| 57 |
+
"model_type": "qwen2",
|
| 58 |
+
"no_repeat_ngram_size": 0,
|
| 59 |
+
"num_attention_heads": 14,
|
| 60 |
+
"num_beam_groups": 1,
|
| 61 |
+
"num_beams": 1,
|
| 62 |
+
"num_hidden_layers": 24,
|
| 63 |
+
"num_key_value_heads": 2,
|
| 64 |
+
"num_return_sequences": 1,
|
| 65 |
+
"output_attentions": False,
|
| 66 |
+
"output_hidden_states": False,
|
| 67 |
+
"output_scores": False,
|
| 68 |
+
"pad_token_id": None,
|
| 69 |
+
"prefix": None,
|
| 70 |
+
"problem_type": None,
|
| 71 |
+
"pruned_heads": {},
|
| 72 |
+
"remove_invalid_values": False,
|
| 73 |
+
"repetition_penalty": 1.0,
|
| 74 |
+
"return_dict": True,
|
| 75 |
+
"return_dict_in_generate": False,
|
| 76 |
+
"rms_norm_eps": 1e-06,
|
| 77 |
+
"rope_theta": 1000000.0,
|
| 78 |
+
"sep_token_id": None,
|
| 79 |
+
"sliding_window": 131072,
|
| 80 |
+
"suppress_tokens": None,
|
| 81 |
+
"task_specific_params": None,
|
| 82 |
+
"temperature": 1.0,
|
| 83 |
+
"tf_legacy_loss": False,
|
| 84 |
+
"tie_encoder_decoder": False,
|
| 85 |
+
"tie_word_embeddings": True,
|
| 86 |
+
"tokenizer_class": None,
|
| 87 |
+
"top_k": 50,
|
| 88 |
+
"top_p": 1.0,
|
| 89 |
+
"torch_dtype": "bfloat16",
|
| 90 |
+
"torchscript": False,
|
| 91 |
+
"typical_p": 1.0,
|
| 92 |
+
"use_bfloat16": False,
|
| 93 |
+
"use_cache": True,
|
| 94 |
+
"use_sliding_window": False,
|
| 95 |
+
"vocab_size": 151936,
|
| 96 |
+
"attn_implementation": None,
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class Qwen2Config(PretrainedConfig):
|
| 101 |
+
r"""
|
| 102 |
+
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
| 103 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 104 |
+
with the defaults will yield a similar configuration to that of
|
| 105 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
| 106 |
+
|
| 107 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 108 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
| 113 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
| 114 |
+
`inputs_ids` passed when calling [`Qwen2Model`]
|
| 115 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 116 |
+
Dimension of the hidden representations.
|
| 117 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
| 118 |
+
Dimension of the MLP representations.
|
| 119 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 120 |
+
Number of hidden layers in the Transformer encoder.
|
| 121 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 122 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 123 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
| 124 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 125 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 126 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 127 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 128 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 129 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
| 130 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 131 |
+
The non-linear activation function (function or string) in the decoder.
|
| 132 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 133 |
+
The maximum sequence length that this model might ever be used with.
|
| 134 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 135 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 136 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 137 |
+
The epsilon used by the rms normalization layers.
|
| 138 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 139 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 140 |
+
relevant if `config.is_decoder=True`.
|
| 141 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 142 |
+
Whether the model's input and output word embeddings should be tied.
|
| 143 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 144 |
+
The base period of the RoPE embeddings.
|
| 145 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 146 |
+
Whether to use sliding window attention.
|
| 147 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 148 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 149 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
| 150 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 151 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 152 |
+
The dropout ratio for the attention probabilities.
|
| 153 |
+
|
| 154 |
+
```python
|
| 155 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
| 156 |
+
|
| 157 |
+
>>> # Initializing a Qwen2 style configuration
|
| 158 |
+
>>> configuration = Qwen2Config()
|
| 159 |
+
|
| 160 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
| 161 |
+
>>> model = Qwen2Model(configuration)
|
| 162 |
+
|
| 163 |
+
>>> # Accessing the model configuration
|
| 164 |
+
>>> configuration = model.config
|
| 165 |
+
```"""
|
| 166 |
+
|
| 167 |
+
model_type = "qwen2"
|
| 168 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 169 |
+
|
| 170 |
+
def __init__(
|
| 171 |
+
self,
|
| 172 |
+
vocab_size=151936,
|
| 173 |
+
hidden_size=4096,
|
| 174 |
+
intermediate_size=22016,
|
| 175 |
+
num_hidden_layers=32,
|
| 176 |
+
num_attention_heads=32,
|
| 177 |
+
num_key_value_heads=32,
|
| 178 |
+
hidden_act="silu",
|
| 179 |
+
max_position_embeddings=32768,
|
| 180 |
+
initializer_range=0.02,
|
| 181 |
+
rms_norm_eps=1e-6,
|
| 182 |
+
use_cache=True,
|
| 183 |
+
tie_word_embeddings=False,
|
| 184 |
+
rope_theta=10000.0,
|
| 185 |
+
use_sliding_window=False,
|
| 186 |
+
sliding_window=4096,
|
| 187 |
+
max_window_layers=28,
|
| 188 |
+
attention_dropout=0.0,
|
| 189 |
+
encoder_config=None,
|
| 190 |
+
**kwargs,
|
| 191 |
+
):
|
| 192 |
+
self.vocab_size = vocab_size
|
| 193 |
+
self.max_position_embeddings = max_position_embeddings
|
| 194 |
+
self.hidden_size = hidden_size
|
| 195 |
+
self.intermediate_size = intermediate_size
|
| 196 |
+
self.num_hidden_layers = num_hidden_layers
|
| 197 |
+
self.num_attention_heads = num_attention_heads
|
| 198 |
+
self.use_sliding_window = use_sliding_window
|
| 199 |
+
self.sliding_window = sliding_window
|
| 200 |
+
self.max_window_layers = max_window_layers
|
| 201 |
+
|
| 202 |
+
# for backward compatibility
|
| 203 |
+
if num_key_value_heads is None:
|
| 204 |
+
num_key_value_heads = num_attention_heads
|
| 205 |
+
|
| 206 |
+
self.num_key_value_heads = num_key_value_heads
|
| 207 |
+
self.hidden_act = hidden_act
|
| 208 |
+
self.initializer_range = initializer_range
|
| 209 |
+
self.rms_norm_eps = rms_norm_eps
|
| 210 |
+
self.use_cache = use_cache
|
| 211 |
+
self.rope_theta = rope_theta
|
| 212 |
+
self.attention_dropout = attention_dropout
|
| 213 |
+
self.encoder_config = encoder_config
|
| 214 |
+
|
| 215 |
+
super().__init__(
|
| 216 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 217 |
+
**kwargs,
|
| 218 |
+
)
|
modeling_dolphin.py
ADDED
|
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import (
|
| 2 |
+
AutoTokenizer, AutoModelForCausalLM, AutoConfig, logging
|
| 3 |
+
)
|
| 4 |
+
from transformers.modeling_outputs import (
|
| 5 |
+
BaseModelOutputWithPast,
|
| 6 |
+
CausalLMOutputWithPast,
|
| 7 |
+
SequenceClassifierOutputWithPast,
|
| 8 |
+
)
|
| 9 |
+
from transformers.utils import (ModelOutput)
|
| 10 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 11 |
+
from transformers.models.qwen2.modeling_qwen2 import (
|
| 12 |
+
Qwen2PreTrainedModel, Qwen2Model, Qwen2RMSNorm
|
| 13 |
+
)
|
| 14 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
from typing import List, Optional, Tuple, Union
|
| 18 |
+
import warnings
|
| 19 |
+
from dataclasses import dataclass
|
| 20 |
+
from torch.nn import CrossEntropyLoss
|
| 21 |
+
from .configuration_dolphin import encoder_config_dict, Qwen2Config
|
| 22 |
+
|
| 23 |
+
CONTEXT_EMB = 896 # Qwen 0.7B has dimension of 896
|
| 24 |
+
HIDDEN_EMB = 3584 # Qwen 7B has dimension of 3584
|
| 25 |
+
warnings.filterwarnings("ignore")
|
| 26 |
+
MEM_SIZE = 32
|
| 27 |
+
logger = logging.get_logger(__name__)
|
| 28 |
+
|
| 29 |
+
@dataclass
|
| 30 |
+
class DolphinMemoryOutput(ModelOutput):
|
| 31 |
+
memory_states: Optional[torch.FloatTensor] = None
|
| 32 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 33 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 34 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 35 |
+
|
| 36 |
+
class Qwen2ForMemoryOutput(Qwen2PreTrainedModel):
|
| 37 |
+
def __init__(self, config):
|
| 38 |
+
super().__init__(config)
|
| 39 |
+
self.num_labels = config.num_labels
|
| 40 |
+
self.model = Qwen2Model(config)
|
| 41 |
+
self.model.config.pad_token_id = self.model.config.eos_token_id
|
| 42 |
+
|
| 43 |
+
# Initialize weights and apply final processing
|
| 44 |
+
self.post_init()
|
| 45 |
+
|
| 46 |
+
def get_input_embeddings(self):
|
| 47 |
+
return self.model.embed_tokens
|
| 48 |
+
|
| 49 |
+
def set_input_embeddings(self, value):
|
| 50 |
+
self.model.embed_tokens = value
|
| 51 |
+
|
| 52 |
+
def forward(
|
| 53 |
+
self,
|
| 54 |
+
input_ids: torch.LongTensor = None,
|
| 55 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 56 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 57 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 58 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 59 |
+
labels: Optional[torch.LongTensor] = None,
|
| 60 |
+
use_cache: Optional[bool] = None,
|
| 61 |
+
output_attentions: Optional[bool] = None,
|
| 62 |
+
output_hidden_states: Optional[bool] = None,
|
| 63 |
+
return_dict: Optional[bool] = None,
|
| 64 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 65 |
+
r"""
|
| 66 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 67 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 68 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 69 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 70 |
+
"""
|
| 71 |
+
return_dict = (
|
| 72 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 73 |
+
)
|
| 74 |
+
transformer_outputs = self.model(
|
| 75 |
+
input_ids,
|
| 76 |
+
attention_mask=attention_mask,
|
| 77 |
+
position_ids=position_ids,
|
| 78 |
+
past_key_values=past_key_values,
|
| 79 |
+
inputs_embeds=inputs_embeds,
|
| 80 |
+
use_cache=use_cache,
|
| 81 |
+
output_attentions=output_attentions,
|
| 82 |
+
output_hidden_states=output_hidden_states,
|
| 83 |
+
return_dict=return_dict,
|
| 84 |
+
)
|
| 85 |
+
hidden_states = transformer_outputs[0]
|
| 86 |
+
|
| 87 |
+
if input_ids is not None:
|
| 88 |
+
batch_size = input_ids.shape[0]
|
| 89 |
+
else:
|
| 90 |
+
batch_size = inputs_embeds.shape[0]
|
| 91 |
+
|
| 92 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 93 |
+
raise ValueError(
|
| 94 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 95 |
+
)
|
| 96 |
+
if self.config.pad_token_id is None:
|
| 97 |
+
sequence_lengths = -1
|
| 98 |
+
else:
|
| 99 |
+
if input_ids is not None:
|
| 100 |
+
sequence_lengths = (
|
| 101 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1)
|
| 102 |
+
)
|
| 103 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 104 |
+
sequence_lengths = sequence_lengths.to(hidden_states.device)
|
| 105 |
+
else:
|
| 106 |
+
sequence_lengths = -1
|
| 107 |
+
|
| 108 |
+
# if sequence_lengths != -1:
|
| 109 |
+
# assert (sequence_lengths > MEMORY_SIZE).all(), "All sequences must be longer than MEMORY_SIZE"
|
| 110 |
+
|
| 111 |
+
MEMORY_SIZE = 32
|
| 112 |
+
batch_range = torch.arange(batch_size, device=hidden_states.device)
|
| 113 |
+
start_indices = sequence_lengths - MEMORY_SIZE
|
| 114 |
+
# print(sequence_lengths)
|
| 115 |
+
# print(torch.arange(MEMORY_SIZE, device=hidden_states.device)[None, :] + start_indices[:, None])
|
| 116 |
+
memory_states = hidden_states[
|
| 117 |
+
batch_range[:, None],
|
| 118 |
+
torch.arange(MEMORY_SIZE, device=hidden_states.device)[None, :]
|
| 119 |
+
+ start_indices[:, None],
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
return DolphinMemoryOutput(
|
| 123 |
+
memory_states=memory_states,
|
| 124 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 125 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 126 |
+
attentions=transformer_outputs.attentions,
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class Projector(nn.Module):
|
| 131 |
+
def __init__(self, context_dim: int, hidden_dim: int, projection_cls="linear"):
|
| 132 |
+
super().__init__()
|
| 133 |
+
self.projection_cls = projection_cls
|
| 134 |
+
if projection_cls == "linear":
|
| 135 |
+
self.context_projection = nn.Linear(context_dim, hidden_dim)
|
| 136 |
+
elif projection_cls == "mlp":
|
| 137 |
+
dim_projection = hidden_dim
|
| 138 |
+
depth = 2
|
| 139 |
+
layers = [
|
| 140 |
+
nn.Linear(context_dim, dim_projection),
|
| 141 |
+
]
|
| 142 |
+
for _ in range(1, depth):
|
| 143 |
+
layers.extend(
|
| 144 |
+
[
|
| 145 |
+
nn.GELU(),
|
| 146 |
+
nn.Linear(dim_projection, dim_projection),
|
| 147 |
+
]
|
| 148 |
+
)
|
| 149 |
+
self.context_projection = nn.Sequential(*layers)
|
| 150 |
+
else:
|
| 151 |
+
raise ValueError(f"Projection class {projection_cls} not supported")
|
| 152 |
+
|
| 153 |
+
def forward(self, x):
|
| 154 |
+
if self.projection_cls == "linear":
|
| 155 |
+
return self.context_projection(x)
|
| 156 |
+
|
| 157 |
+
for layer in self.context_projection:
|
| 158 |
+
x = layer(x)
|
| 159 |
+
return x
|
| 160 |
+
|
| 161 |
+
class ContextEmbd(nn.Module):
|
| 162 |
+
def __init__(
|
| 163 |
+
self, config, context_dim, hidden_dim, MEM_SIZE=32, torch_dtype=torch.bfloat16
|
| 164 |
+
):
|
| 165 |
+
super().__init__()
|
| 166 |
+
self.encoder = Qwen2ForMemoryOutput(config).to(torch_dtype)
|
| 167 |
+
self.projector = Projector(context_dim, hidden_dim).to(torch_dtype)
|
| 168 |
+
self.MEM_SIZE = MEM_SIZE
|
| 169 |
+
|
| 170 |
+
def forward(self, context_input_ids, context_attention_mask=None):
|
| 171 |
+
memory_slot = self.encoder(
|
| 172 |
+
context_input_ids, context_attention_mask, output_hidden_states=True
|
| 173 |
+
).memory_states
|
| 174 |
+
|
| 175 |
+
# now project the memory slot into token space
|
| 176 |
+
return self.projector(memory_slot)
|
| 177 |
+
|
| 178 |
+
class DolphinModel(Qwen2PreTrainedModel):
|
| 179 |
+
"""
|
| 180 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
| 181 |
+
|
| 182 |
+
Args:
|
| 183 |
+
config: DolphinModel
|
| 184 |
+
"""
|
| 185 |
+
|
| 186 |
+
def __init__(self, config: Qwen2Config):
|
| 187 |
+
super().__init__(config)
|
| 188 |
+
self.padding_idx = config.pad_token_id
|
| 189 |
+
self.vocab_size = config.vocab_size
|
| 190 |
+
|
| 191 |
+
self.embed_tokens = nn.Embedding(
|
| 192 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
| 193 |
+
)
|
| 194 |
+
self.layers = nn.ModuleList(
|
| 195 |
+
[
|
| 196 |
+
Qwen2DecoderLayer(config, layer_idx)
|
| 197 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 198 |
+
]
|
| 199 |
+
)
|
| 200 |
+
self._attn_implementation = config._attn_implementation
|
| 201 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 202 |
+
self.gradient_checkpointing = False
|
| 203 |
+
|
| 204 |
+
if not config.encoder_config:
|
| 205 |
+
raise ValueError("Please provide the encoder config")
|
| 206 |
+
self.encoder_config = Qwen2Config.from_dict(config.encoder_config)
|
| 207 |
+
self.context_encoder = ContextEmbd(
|
| 208 |
+
config=self.encoder_config, context_dim=CONTEXT_EMB, hidden_dim=HIDDEN_EMB
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# Initialize weights and apply final processing
|
| 212 |
+
self.post_init()
|
| 213 |
+
|
| 214 |
+
def get_input_embeddings(self):
|
| 215 |
+
return self.embed_tokens
|
| 216 |
+
|
| 217 |
+
def set_input_embeddings(self, value):
|
| 218 |
+
self.embed_tokens = value
|
| 219 |
+
|
| 220 |
+
# We assume there is only on context, and this function can only support one context
|
| 221 |
+
def get_token_embebddings_context(
|
| 222 |
+
self,
|
| 223 |
+
input_ids: torch.LongTensor,
|
| 224 |
+
context_input_ids: torch.LongTensor,
|
| 225 |
+
context_attention_mask: torch.LongTensor,
|
| 226 |
+
) -> torch.FloatTensor:
|
| 227 |
+
# The size is batch_size x memory_size x hidden_dim
|
| 228 |
+
context_emb = self.context_encoder(context_input_ids, context_attention_mask)
|
| 229 |
+
|
| 230 |
+
# Create embeddings for regular tokens
|
| 231 |
+
embed_input_ids = input_ids.clone()
|
| 232 |
+
embed_input_ids[embed_input_ids < 0] = (
|
| 233 |
+
0 # Replace negative values with 0 for embedding
|
| 234 |
+
)
|
| 235 |
+
hidden_states = self.embed_tokens(embed_input_ids)
|
| 236 |
+
|
| 237 |
+
batch_size, seq_len, hidden_dim = hidden_states.shape
|
| 238 |
+
_, memory_size, _ = context_emb.shape
|
| 239 |
+
|
| 240 |
+
# Find the start positions of -1 sequences
|
| 241 |
+
mask = input_ids == -1
|
| 242 |
+
starts = torch.where(mask[:, :-1] < mask[:, 1:])[1]
|
| 243 |
+
|
| 244 |
+
# Replace -1 spans with context embeddings
|
| 245 |
+
for i in range(batch_size):
|
| 246 |
+
for start in starts:
|
| 247 |
+
if start + memory_size <= seq_len:
|
| 248 |
+
hidden_states[i, start : start + memory_size] = context_emb[i]
|
| 249 |
+
|
| 250 |
+
return hidden_states
|
| 251 |
+
|
| 252 |
+
def forward(
|
| 253 |
+
self,
|
| 254 |
+
input_ids: torch.LongTensor = None,
|
| 255 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 256 |
+
context_input_ids: Optional[torch.LongTensor] = None,
|
| 257 |
+
context_attention_mask: Optional[torch.Tensor] = None,
|
| 258 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 259 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 260 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 261 |
+
use_cache: Optional[bool] = None,
|
| 262 |
+
output_attentions: Optional[bool] = None,
|
| 263 |
+
output_hidden_states: Optional[bool] = None,
|
| 264 |
+
return_dict: Optional[bool] = None,
|
| 265 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 266 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 267 |
+
output_attentions = (
|
| 268 |
+
output_attentions
|
| 269 |
+
if output_attentions is not None
|
| 270 |
+
else self.config.output_attentions
|
| 271 |
+
)
|
| 272 |
+
output_hidden_states = (
|
| 273 |
+
output_hidden_states
|
| 274 |
+
if output_hidden_states is not None
|
| 275 |
+
else self.config.output_hidden_states
|
| 276 |
+
)
|
| 277 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 278 |
+
|
| 279 |
+
return_dict = (
|
| 280 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 284 |
+
raise ValueError(
|
| 285 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
if self.gradient_checkpointing and self.training:
|
| 289 |
+
if use_cache:
|
| 290 |
+
logger.warning_once(
|
| 291 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 292 |
+
)
|
| 293 |
+
use_cache = False
|
| 294 |
+
|
| 295 |
+
use_legacy_cache = False
|
| 296 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
| 297 |
+
use_legacy_cache = True
|
| 298 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 299 |
+
logger.warning_once(
|
| 300 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
| 301 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
if inputs_embeds is None:
|
| 305 |
+
if context_input_ids is not None:
|
| 306 |
+
assert (
|
| 307 |
+
context_attention_mask is not None
|
| 308 |
+
), "You have to provide the context_attention_mask"
|
| 309 |
+
inputs_embeds = self.get_token_embebddings_context(
|
| 310 |
+
input_ids, context_input_ids, context_attention_mask
|
| 311 |
+
)
|
| 312 |
+
else:
|
| 313 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 314 |
+
|
| 315 |
+
# We need to update the attention mask if the attention mask is provided
|
| 316 |
+
# if attention_mask is not None:
|
| 317 |
+
# MEMORY_SIZE = 32
|
| 318 |
+
# batch_size = inputs_embeds.shape[0]
|
| 319 |
+
# attention_mask = torch.cat(
|
| 320 |
+
# (torch.ones(batch_size, MEMORY_SIZE, device=inputs_embeds.device), attention_mask),
|
| 321 |
+
# dim=1,
|
| 322 |
+
# ).to(attention_mask.dtype).to(attention_mask.device)
|
| 323 |
+
|
| 324 |
+
if cache_position is None:
|
| 325 |
+
past_seen_tokens = (
|
| 326 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 327 |
+
)
|
| 328 |
+
cache_position = torch.arange(
|
| 329 |
+
past_seen_tokens,
|
| 330 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
| 331 |
+
device=inputs_embeds.device,
|
| 332 |
+
)
|
| 333 |
+
if position_ids is None:
|
| 334 |
+
position_ids = cache_position.unsqueeze(0)
|
| 335 |
+
|
| 336 |
+
causal_mask = self._update_causal_mask(
|
| 337 |
+
attention_mask,
|
| 338 |
+
inputs_embeds,
|
| 339 |
+
cache_position,
|
| 340 |
+
past_key_values,
|
| 341 |
+
output_attentions,
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
hidden_states = inputs_embeds
|
| 345 |
+
|
| 346 |
+
# decoder layers
|
| 347 |
+
all_hidden_states = () if output_hidden_states else None
|
| 348 |
+
all_self_attns = () if output_attentions else None
|
| 349 |
+
next_decoder_cache = None
|
| 350 |
+
|
| 351 |
+
for decoder_layer in self.layers:
|
| 352 |
+
if output_hidden_states:
|
| 353 |
+
all_hidden_states += (hidden_states,)
|
| 354 |
+
|
| 355 |
+
if self.gradient_checkpointing and self.training:
|
| 356 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 357 |
+
decoder_layer.__call__,
|
| 358 |
+
hidden_states,
|
| 359 |
+
causal_mask,
|
| 360 |
+
position_ids,
|
| 361 |
+
past_key_values,
|
| 362 |
+
output_attentions,
|
| 363 |
+
use_cache,
|
| 364 |
+
cache_position,
|
| 365 |
+
)
|
| 366 |
+
else:
|
| 367 |
+
layer_outputs = decoder_layer(
|
| 368 |
+
hidden_states,
|
| 369 |
+
attention_mask=causal_mask,
|
| 370 |
+
position_ids=position_ids,
|
| 371 |
+
past_key_value=past_key_values,
|
| 372 |
+
output_attentions=output_attentions,
|
| 373 |
+
use_cache=use_cache,
|
| 374 |
+
cache_position=cache_position,
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
hidden_states = layer_outputs[0]
|
| 378 |
+
|
| 379 |
+
if use_cache:
|
| 380 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 381 |
+
|
| 382 |
+
if output_attentions:
|
| 383 |
+
all_self_attns += (layer_outputs[1],)
|
| 384 |
+
|
| 385 |
+
hidden_states = self.norm(hidden_states)
|
| 386 |
+
|
| 387 |
+
# add hidden states from the last decoder layer
|
| 388 |
+
if output_hidden_states:
|
| 389 |
+
all_hidden_states += (hidden_states,)
|
| 390 |
+
|
| 391 |
+
next_cache = None
|
| 392 |
+
if use_cache:
|
| 393 |
+
next_cache = (
|
| 394 |
+
next_decoder_cache.to_legacy_cache()
|
| 395 |
+
if use_legacy_cache
|
| 396 |
+
else next_decoder_cache
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
if not return_dict:
|
| 400 |
+
return tuple(
|
| 401 |
+
v
|
| 402 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 403 |
+
if v is not None
|
| 404 |
+
)
|
| 405 |
+
return BaseModelOutputWithPast(
|
| 406 |
+
last_hidden_state=hidden_states,
|
| 407 |
+
past_key_values=next_cache,
|
| 408 |
+
hidden_states=all_hidden_states,
|
| 409 |
+
attentions=all_self_attns,
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
|
| 413 |
+
def _update_causal_mask(
|
| 414 |
+
self,
|
| 415 |
+
attention_mask: torch.Tensor,
|
| 416 |
+
input_tensor: torch.Tensor,
|
| 417 |
+
cache_position: torch.Tensor,
|
| 418 |
+
past_key_values: Cache,
|
| 419 |
+
output_attentions: bool,
|
| 420 |
+
):
|
| 421 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
| 422 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
| 423 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
| 424 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
| 425 |
+
|
| 426 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 427 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 428 |
+
return attention_mask
|
| 429 |
+
return None
|
| 430 |
+
|
| 431 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 432 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 433 |
+
# to infer the attention mask.
|
| 434 |
+
past_seen_tokens = (
|
| 435 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 436 |
+
)
|
| 437 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 438 |
+
|
| 439 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 440 |
+
if (
|
| 441 |
+
self.config._attn_implementation == "sdpa"
|
| 442 |
+
and not using_static_cache
|
| 443 |
+
and not output_attentions
|
| 444 |
+
):
|
| 445 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 446 |
+
attention_mask,
|
| 447 |
+
inputs_embeds=input_tensor,
|
| 448 |
+
past_key_values_length=past_seen_tokens,
|
| 449 |
+
is_training=self.training,
|
| 450 |
+
):
|
| 451 |
+
return None
|
| 452 |
+
|
| 453 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 454 |
+
min_dtype = torch.finfo(dtype).min
|
| 455 |
+
sequence_length = input_tensor.shape[1]
|
| 456 |
+
if using_static_cache:
|
| 457 |
+
target_length = past_key_values.get_max_length()
|
| 458 |
+
else:
|
| 459 |
+
target_length = (
|
| 460 |
+
attention_mask.shape[-1]
|
| 461 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 462 |
+
else past_seen_tokens + sequence_length + 1
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 466 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
| 467 |
+
if attention_mask.max() != 0:
|
| 468 |
+
raise ValueError(
|
| 469 |
+
"Custom 4D attention mask should be passed in inverted form with max==0`"
|
| 470 |
+
)
|
| 471 |
+
causal_mask = attention_mask
|
| 472 |
+
else:
|
| 473 |
+
causal_mask = torch.full(
|
| 474 |
+
(sequence_length, target_length),
|
| 475 |
+
fill_value=min_dtype,
|
| 476 |
+
dtype=dtype,
|
| 477 |
+
device=device,
|
| 478 |
+
)
|
| 479 |
+
if sequence_length != 1:
|
| 480 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 481 |
+
causal_mask *= torch.arange(
|
| 482 |
+
target_length, device=device
|
| 483 |
+
) > cache_position.reshape(-1, 1)
|
| 484 |
+
causal_mask = causal_mask[None, None, :, :].expand(
|
| 485 |
+
input_tensor.shape[0], 1, -1, -1
|
| 486 |
+
)
|
| 487 |
+
if attention_mask is not None:
|
| 488 |
+
causal_mask = (
|
| 489 |
+
causal_mask.clone()
|
| 490 |
+
) # copy to contiguous memory for in-place edit
|
| 491 |
+
mask_length = attention_mask.shape[-1]
|
| 492 |
+
padding_mask = (
|
| 493 |
+
causal_mask[:, :, :, :mask_length]
|
| 494 |
+
+ attention_mask[:, None, None, :]
|
| 495 |
+
)
|
| 496 |
+
padding_mask = padding_mask == 0
|
| 497 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
| 498 |
+
:, :, :, :mask_length
|
| 499 |
+
].masked_fill(padding_mask, min_dtype)
|
| 500 |
+
if (
|
| 501 |
+
self.config._attn_implementation == "sdpa"
|
| 502 |
+
and attention_mask is not None
|
| 503 |
+
and attention_mask.device.type == "cuda"
|
| 504 |
+
and not output_attentions
|
| 505 |
+
):
|
| 506 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 507 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 508 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 509 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
| 510 |
+
causal_mask, min_dtype
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
return causal_mask
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
class DolphinForCausalLM(Qwen2PreTrainedModel):
|
| 517 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 518 |
+
|
| 519 |
+
def __init__(self, config):
|
| 520 |
+
super().__init__(config)
|
| 521 |
+
self.model = DolphinModel(config)
|
| 522 |
+
self.vocab_size = config.vocab_size
|
| 523 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 524 |
+
|
| 525 |
+
# Initialize weights and apply final processing
|
| 526 |
+
self.post_init()
|
| 527 |
+
|
| 528 |
+
def get_input_embeddings(self):
|
| 529 |
+
return self.model.embed_tokens
|
| 530 |
+
|
| 531 |
+
def set_input_embeddings(self, value):
|
| 532 |
+
self.model.embed_tokens = value
|
| 533 |
+
|
| 534 |
+
def get_output_embeddings(self):
|
| 535 |
+
return self.lm_head
|
| 536 |
+
|
| 537 |
+
def set_output_embeddings(self, new_embeddings):
|
| 538 |
+
self.lm_head = new_embeddings
|
| 539 |
+
|
| 540 |
+
def set_decoder(self, decoder):
|
| 541 |
+
self.model = decoder
|
| 542 |
+
|
| 543 |
+
def get_decoder(self):
|
| 544 |
+
return self.model
|
| 545 |
+
|
| 546 |
+
def forward(
|
| 547 |
+
self,
|
| 548 |
+
input_ids: torch.LongTensor = None,
|
| 549 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 550 |
+
context_input_ids: Optional[torch.LongTensor] = None,
|
| 551 |
+
context_attention_mask: Optional[torch.Tensor] = None,
|
| 552 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 553 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 554 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 555 |
+
labels: Optional[torch.LongTensor] = None,
|
| 556 |
+
use_cache: Optional[bool] = None,
|
| 557 |
+
output_attentions: Optional[bool] = None,
|
| 558 |
+
output_hidden_states: Optional[bool] = None,
|
| 559 |
+
return_dict: Optional[bool] = None,
|
| 560 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 561 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 562 |
+
r"""
|
| 563 |
+
Args:
|
| 564 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 565 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 566 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 567 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 568 |
+
```"""
|
| 569 |
+
|
| 570 |
+
output_attentions = (
|
| 571 |
+
output_attentions
|
| 572 |
+
if output_attentions is not None
|
| 573 |
+
else self.config.output_attentions
|
| 574 |
+
)
|
| 575 |
+
output_hidden_states = (
|
| 576 |
+
output_hidden_states
|
| 577 |
+
if output_hidden_states is not None
|
| 578 |
+
else self.config.output_hidden_states
|
| 579 |
+
)
|
| 580 |
+
return_dict = (
|
| 581 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 585 |
+
outputs = self.model(
|
| 586 |
+
input_ids=input_ids,
|
| 587 |
+
attention_mask=attention_mask,
|
| 588 |
+
context_input_ids=context_input_ids,
|
| 589 |
+
context_attention_mask=context_attention_mask,
|
| 590 |
+
position_ids=position_ids,
|
| 591 |
+
past_key_values=past_key_values,
|
| 592 |
+
inputs_embeds=inputs_embeds,
|
| 593 |
+
use_cache=use_cache,
|
| 594 |
+
output_attentions=output_attentions,
|
| 595 |
+
output_hidden_states=output_hidden_states,
|
| 596 |
+
return_dict=return_dict,
|
| 597 |
+
cache_position=cache_position,
|
| 598 |
+
)
|
| 599 |
+
|
| 600 |
+
hidden_states = outputs[0]
|
| 601 |
+
logits = self.lm_head(hidden_states)
|
| 602 |
+
logits = logits.float()
|
| 603 |
+
|
| 604 |
+
loss = None
|
| 605 |
+
if labels is not None:
|
| 606 |
+
# Shift so that tokens < n predict n
|
| 607 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 608 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 609 |
+
# Flatten the tokens
|
| 610 |
+
loss_fct = CrossEntropyLoss()
|
| 611 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 612 |
+
shift_labels = shift_labels.view(-1)
|
| 613 |
+
# Enable model parallelism
|
| 614 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 615 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 616 |
+
|
| 617 |
+
if not return_dict:
|
| 618 |
+
output = (logits,) + outputs[1:]
|
| 619 |
+
return (loss,) + output if loss is not None else output
|
| 620 |
+
|
| 621 |
+
return CausalLMOutputWithPast(
|
| 622 |
+
loss=loss,
|
| 623 |
+
logits=logits,
|
| 624 |
+
past_key_values=outputs.past_key_values,
|
| 625 |
+
hidden_states=outputs.hidden_states,
|
| 626 |
+
attentions=outputs.attentions,
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
def prepare_inputs_for_generation(
|
| 630 |
+
self,
|
| 631 |
+
input_ids,
|
| 632 |
+
past_key_values=None,
|
| 633 |
+
attention_mask=None,
|
| 634 |
+
inputs_embeds=None,
|
| 635 |
+
cache_position=None,
|
| 636 |
+
use_cache=True,
|
| 637 |
+
**kwargs,
|
| 638 |
+
):
|
| 639 |
+
past_length = 0
|
| 640 |
+
# Omit tokens covered by past_key_values
|
| 641 |
+
if past_key_values is not None:
|
| 642 |
+
# Past key values are always initialized with a `Cache` object -> no need for if-else anymore
|
| 643 |
+
past_length = (
|
| 644 |
+
cache_position[0]
|
| 645 |
+
if cache_position is not None
|
| 646 |
+
else past_key_values.get_seq_length()
|
| 647 |
+
)
|
| 648 |
+
max_cache_length = (
|
| 649 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
| 650 |
+
if past_key_values.get_max_length() is not None
|
| 651 |
+
else None
|
| 652 |
+
)
|
| 653 |
+
cache_length = (
|
| 654 |
+
past_length
|
| 655 |
+
if max_cache_length is None
|
| 656 |
+
else torch.min(max_cache_length, past_length)
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
# Keep only the unprocessed tokens:
|
| 660 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 661 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 662 |
+
# input)
|
| 663 |
+
if (
|
| 664 |
+
attention_mask is not None
|
| 665 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
| 666 |
+
):
|
| 667 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 668 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 669 |
+
# input_ids based on the past_length.
|
| 670 |
+
elif past_length < input_ids.shape[1]:
|
| 671 |
+
input_ids = input_ids[:, past_length:]
|
| 672 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 673 |
+
|
| 674 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 675 |
+
if (
|
| 676 |
+
max_cache_length is not None
|
| 677 |
+
and attention_mask is not None
|
| 678 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 679 |
+
):
|
| 680 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 681 |
+
|
| 682 |
+
position_ids = kwargs.get("position_ids", None)
|
| 683 |
+
if attention_mask is not None and position_ids is None:
|
| 684 |
+
# create position_ids on the fly for batch generation
|
| 685 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 686 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 687 |
+
if past_key_values:
|
| 688 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 689 |
+
|
| 690 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 691 |
+
if inputs_embeds is not None and past_length == 0:
|
| 692 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 693 |
+
else:
|
| 694 |
+
model_inputs = {"input_ids": input_ids}
|
| 695 |
+
|
| 696 |
+
input_length = (
|
| 697 |
+
position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
| 698 |
+
)
|
| 699 |
+
if cache_position is None:
|
| 700 |
+
cache_position = torch.arange(
|
| 701 |
+
past_length, past_length + input_length, device=input_ids.device
|
| 702 |
+
)
|
| 703 |
+
elif use_cache:
|
| 704 |
+
cache_position = cache_position[-input_length:]
|
| 705 |
+
|
| 706 |
+
model_inputs.update(
|
| 707 |
+
{
|
| 708 |
+
"position_ids": position_ids,
|
| 709 |
+
"past_key_values": past_key_values,
|
| 710 |
+
"use_cache": use_cache,
|
| 711 |
+
"attention_mask": attention_mask,
|
| 712 |
+
"cache_position": cache_position,
|
| 713 |
+
}
|
| 714 |
+
)
|
| 715 |
+
return model_inputs
|
| 716 |
+
|
| 717 |
+
@staticmethod
|
| 718 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 719 |
+
reordered_past = ()
|
| 720 |
+
for layer_past in past_key_values:
|
| 721 |
+
reordered_past += (
|
| 722 |
+
tuple(
|
| 723 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 724 |
+
for past_state in layer_past
|
| 725 |
+
),
|
| 726 |
+
)
|
| 727 |
+
return reordered_past
|
| 728 |
+
|
| 729 |
+
if __name__ == "__main__":
|
| 730 |
+
config = Qwen2Config(encoder_config=encoder_config_dict)
|
| 731 |
+
dolphin_model = DolphinModel(config)
|
| 732 |
+
# AutoConfig.register("dolphin", Qwen2Config)
|
| 733 |
+
AutoModelForCausalLM.register(Qwen2Config, DolphinForCausalLM)
|
| 734 |
+
tokenizer = AutoTokenizer.from_pretrained('nexa-collaboration/dolphin_instruct_1M_0805', trust_remote_code=True)
|
| 735 |
+
model = AutoModelForCausalLM.from_pretrained('nexa-collaboration/dolphin_instruct_1M_0805', trust_remote_code=True)
|