Update README.md (#4)
Browse files- Update README.md (4f727ec8cb619aa5f9f473cc7883b7ef4e3fd191)
Co-authored-by: Zoey Shu <[email protected]>
README.md
CHANGED
|
@@ -14,7 +14,6 @@ spaces: false
|
|
| 14 |
language:
|
| 15 |
- en
|
| 16 |
---
|
| 17 |
-
|
| 18 |
# Quantized Octopus V2: On-device language model for super agent
|
| 19 |
|
| 20 |
This repo includes two types of quantized models: **GGUF** and **AWQ**, for our Octopus V2 model at [NexaAIDev/Octopus-v2](https://huggingface.co/NexaAIDev/Octopus-v2)
|
|
@@ -25,63 +24,112 @@ This repo includes two types of quantized models: **GGUF** and **AWQ**, for our
|
|
| 25 |
|
| 26 |
|
| 27 |
# GGUF Qauntization
|
| 28 |
-
Run with [Ollama](https://github.com/ollama/ollama)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
```bash
|
| 31 |
-
ollama run
|
| 32 |
```
|
| 33 |
|
| 34 |
# AWQ Quantization
|
| 35 |
Python example:
|
| 36 |
|
| 37 |
```python
|
|
|
|
| 38 |
from awq import AutoAWQForCausalLM
|
| 39 |
-
from transformers import AutoTokenizer, GemmaForCausalLM
|
| 40 |
import torch
|
| 41 |
import time
|
| 42 |
import numpy as np
|
| 43 |
-
|
| 44 |
def inference(input_text):
|
| 45 |
-
|
| 46 |
-
tokens = tokenizer(
|
| 47 |
-
input_text,
|
| 48 |
-
return_tensors='pt'
|
| 49 |
-
).input_ids.cuda()
|
| 50 |
-
|
| 51 |
start_time = time.time()
|
|
|
|
|
|
|
| 52 |
generation_output = model.generate(
|
| 53 |
-
|
| 54 |
-
do_sample=
|
| 55 |
-
|
| 56 |
-
top_p=0.95,
|
| 57 |
-
top_k=40,
|
| 58 |
-
max_new_tokens=512
|
| 59 |
)
|
| 60 |
end_time = time.time()
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
res =
|
| 64 |
latency = end_time - start_time
|
| 65 |
-
|
| 66 |
-
num_output_tokens = len(output_tokens)
|
| 67 |
throughput = num_output_tokens / latency
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
model_id = "path/to/Octopus-v2-AWQ"
|
| 73 |
model = AutoAWQForCausalLM.from_quantized(model_id, fuse_layers=True,
|
| 74 |
trust_remote_code=False, safetensors=True)
|
| 75 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=False)
|
| 76 |
-
|
| 77 |
prompts = ["Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Can you take a photo using the back camera and save it to the default location? \n\nResponse:"]
|
| 78 |
-
|
| 79 |
avg_throughput = []
|
| 80 |
for prompt in prompts:
|
| 81 |
out = inference(prompt)
|
| 82 |
avg_throughput.append(out["throughput"])
|
| 83 |
print("nexa model result:\n", out["output"])
|
| 84 |
-
|
| 85 |
print("avg throughput:", np.mean(avg_throughput))
|
| 86 |
```
|
| 87 |
|
|
@@ -114,5 +162,4 @@ _Quantized with llama.cpp_
|
|
| 114 |
|
| 115 |
|
| 116 |
**Acknowledgement**:
|
| 117 |
-
We sincerely thank our community members, [Mingyuan](https://huggingface.co/ThunderBeee), [Zoey](https://huggingface.co/ZY6), [Brian](https://huggingface.co/JoyboyBrian), [Perry](https://huggingface.co/PerryCheng614), [Qi](https://huggingface.co/qiqiWav), [David](https://huggingface.co/Davidqian123) for their extraordinary contributions to this quantization effort.
|
| 118 |
-
|
|
|
|
| 14 |
language:
|
| 15 |
- en
|
| 16 |
---
|
|
|
|
| 17 |
# Quantized Octopus V2: On-device language model for super agent
|
| 18 |
|
| 19 |
This repo includes two types of quantized models: **GGUF** and **AWQ**, for our Octopus V2 model at [NexaAIDev/Octopus-v2](https://huggingface.co/NexaAIDev/Octopus-v2)
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
# GGUF Qauntization
|
|
|
|
| 27 |
|
| 28 |
+
To run the models, please download them to your local machine using either git clone or [Hugging Face Hub](https://huggingface.co/docs/huggingface_hub/en/guides/download)
|
| 29 |
+
```
|
| 30 |
+
git clone https://huggingface.co/NexaAIDev/Octopus-v2-gguf-awq
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
## Run with [llama.cpp](https://github.com/ggerganov/llama.cpp) (Recommended)
|
| 34 |
+
|
| 35 |
+
1. **Clone and compile:**
|
| 36 |
+
|
| 37 |
+
```bash
|
| 38 |
+
git clone https://github.com/ggerganov/llama.cpp
|
| 39 |
+
cd llama.cpp
|
| 40 |
+
# Compile the source code:
|
| 41 |
+
make
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
2. **Execute the Model:**
|
| 45 |
+
|
| 46 |
+
Run the following command in the terminal:
|
| 47 |
+
|
| 48 |
+
```bash
|
| 49 |
+
./main -m ./path/to/octopus-v2-Q4_K_M.gguf -n 256 -p "Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Take a selfie for me with front camera\n\nResponse:"
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
## Run with [Ollama](https://github.com/ollama/ollama)
|
| 53 |
+
|
| 54 |
+
Since our models have not been uploaded to the Ollama server, please download the models and manually import them into Ollama by following these steps:
|
| 55 |
+
|
| 56 |
+
1. Install Ollama on your local machine. You can also following the guide from [Ollama GitHub repository](https://github.com/ollama/ollama/blob/main/docs/import.md)
|
| 57 |
+
|
| 58 |
+
```bash
|
| 59 |
+
git clone https://github.com/ollama/ollama.git ollama
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
2. Locate the local Ollama directory:
|
| 63 |
+
```bash
|
| 64 |
+
cd ollama
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
3. Create a `Modelfile` in your directory
|
| 68 |
+
```bash
|
| 69 |
+
touch Modelfile
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
4. In the Modelfile, include a `FROM` statement with the path to your local model, and the default parameters:
|
| 73 |
+
|
| 74 |
+
```bash
|
| 75 |
+
FROM ./path/to/octopus-v2-Q4_K_M.gguf
|
| 76 |
+
PARAMETER temperature 0
|
| 77 |
+
PARAMETER num_ctx 1024
|
| 78 |
+
PARAMETER stop <nexa_end>
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
5. Use the following command to add the model to Ollama:
|
| 82 |
+
```bash
|
| 83 |
+
ollama create octopus-v2-Q4_K_M -f Modelfile
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
6. Verify that the model has been successfully imported:
|
| 87 |
+
```bash
|
| 88 |
+
ollama ls
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
7. Run the mode
|
| 92 |
```bash
|
| 93 |
+
ollama run octopus-v2-Q4_K_M "Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Take a selfie for me with front camera\n\nResponse:"
|
| 94 |
```
|
| 95 |
|
| 96 |
# AWQ Quantization
|
| 97 |
Python example:
|
| 98 |
|
| 99 |
```python
|
| 100 |
+
from transformers import AutoTokenizer
|
| 101 |
from awq import AutoAWQForCausalLM
|
|
|
|
| 102 |
import torch
|
| 103 |
import time
|
| 104 |
import numpy as np
|
|
|
|
| 105 |
def inference(input_text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
start_time = time.time()
|
| 107 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to('cuda')
|
| 108 |
+
input_length = input_ids["input_ids"].shape[1]
|
| 109 |
generation_output = model.generate(
|
| 110 |
+
input_ids["input_ids"],
|
| 111 |
+
do_sample=False,
|
| 112 |
+
max_length=1024
|
|
|
|
|
|
|
|
|
|
| 113 |
)
|
| 114 |
end_time = time.time()
|
| 115 |
+
# Decode only the generated part
|
| 116 |
+
generated_sequence = generation_output[:, input_length:].tolist()
|
| 117 |
+
res = tokenizer.decode(generated_sequence[0])
|
| 118 |
latency = end_time - start_time
|
| 119 |
+
num_output_tokens = len(generated_sequence[0])
|
|
|
|
| 120 |
throughput = num_output_tokens / latency
|
| 121 |
+
return {"output": res, "latency": latency, "throughput": throughput}
|
| 122 |
+
# Initialize tokenizer and model
|
| 123 |
+
model_id = "/path/to/Octopus-v2-AWQ-NexaAIDev"
|
| 124 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=False)
|
|
|
|
| 125 |
model = AutoAWQForCausalLM.from_quantized(model_id, fuse_layers=True,
|
| 126 |
trust_remote_code=False, safetensors=True)
|
|
|
|
|
|
|
| 127 |
prompts = ["Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Can you take a photo using the back camera and save it to the default location? \n\nResponse:"]
|
|
|
|
| 128 |
avg_throughput = []
|
| 129 |
for prompt in prompts:
|
| 130 |
out = inference(prompt)
|
| 131 |
avg_throughput.append(out["throughput"])
|
| 132 |
print("nexa model result:\n", out["output"])
|
|
|
|
| 133 |
print("avg throughput:", np.mean(avg_throughput))
|
| 134 |
```
|
| 135 |
|
|
|
|
| 162 |
|
| 163 |
|
| 164 |
**Acknowledgement**:
|
| 165 |
+
We sincerely thank our community members, [Mingyuan](https://huggingface.co/ThunderBeee), [Zoey](https://huggingface.co/ZY6), [Brian](https://huggingface.co/JoyboyBrian), [Perry](https://huggingface.co/PerryCheng614), [Qi](https://huggingface.co/qiqiWav), [David](https://huggingface.co/Davidqian123) for their extraordinary contributions to this quantization effort.
|
|
|