Mr-FineTuner commited on
Commit
ca0e849
·
verified ·
1 Parent(s): 331044f

Add model card with exact and within-1 confusion matrices and per-class metrics

Browse files
Files changed (1) hide show
  1. README.md +24 -24
README.md CHANGED
@@ -1,9 +1,9 @@
1
 
2
- # Fine-Tuned Gemma-7B CEFR Model
3
 
4
- This is a fine-tuned version of `unsloth/gemma-7b-bnb-4bit` for CEFR-level sentence generation, evaluated with a fine-tuned classifier from `Mr-FineTuner/Skripsi_validator_best_model`.
5
 
6
- - **Base Model**: unsloth/gemma-7b-bnb-4bit
7
  - **Fine-Tuning**: LoRA with balanced dataset
8
  - **Training Details**:
9
  - Dataset: CEFR-level sentences (balanced)
@@ -12,21 +12,21 @@ This is a fine-tuned version of `unsloth/gemma-7b-bnb-4bit` for CEFR-level sente
12
  - Optimizer: adamw_8bit
13
  - Early Stopping: Patience=3, threshold=0.01
14
  - **Evaluation Metrics (Exact Matches)**:
15
- - CEFR Classifier Accuracy: 0.167
16
- - Precision (Macro): 0.033
17
- - Recall (Macro): 0.167
18
- - F1-Score (Macro): 0.056
19
  - **Evaluation Metrics (Within ±1 Level)**:
20
- - CEFR Classifier Accuracy: 0.667
21
- - Precision (Macro): 0.556
22
- - Recall (Macro): 0.667
23
- - F1-Score (Macro): 0.583
24
  - **Other Metrics**:
25
- - Perplexity: 2.952
26
  - Diversity (Unique Sentences): 0.100
27
- - Inference Time (ms): 6696.712
28
  - Model Size (GB): 4.2
29
- - Robustness (F1): 0.053
30
  - **Confusion Matrix (Exact Matches)**:
31
  - CSV: [confusion_matrix_exact.csv](confusion_matrix_exact.csv)
32
  - Image: [confusion_matrix_exact.png](confusion_matrix_exact.png)
@@ -35,24 +35,24 @@ This is a fine-tuned version of `unsloth/gemma-7b-bnb-4bit` for CEFR-level sente
35
  - Image: [confusion_matrix_within1.png](confusion_matrix_within1.png)
36
  - **Per-Class Confusion Metrics (Exact Matches)**:
37
  - A1: TP=0, FP=0, FN=10, TN=50
38
- - A2: TP=10, FP=40, FN=0, TN=10
39
- - B1: TP=0, FP=0, FN=10, TN=50
40
- - B2: TP=0, FP=0, FN=10, TN=50
41
- - C1: TP=0, FP=10, FN=10, TN=40
42
  - C2: TP=0, FP=0, FN=10, TN=50
43
  - **Per-Class Confusion Metrics (Within ±1 Level)**:
44
  - A1: TP=10, FP=0, FN=0, TN=50
45
- - A2: TP=10, FP=20, FN=0, TN=30
46
  - B1: TP=10, FP=0, FN=0, TN=50
47
- - B2: TP=0, FP=0, FN=10, TN=50
48
- - C1: TP=0, FP=0, FN=10, TN=50
49
- - C2: TP=10, FP=0, FN=0, TN=50
50
  - **Usage**:
51
  ```python
52
  from transformers import AutoModelForCausalLM, AutoTokenizer
53
 
54
- model = AutoModelForCausalLM.from_pretrained("Mr-FineTuner/Test_02_gemma_trainPercen_myValidator")
55
- tokenizer = AutoTokenizer.from_pretrained("Mr-FineTuner/Test_02_gemma_trainPercen_myValidator")
56
 
57
  # Example inference
58
  prompt = "<|user|>Generate a CEFR B1 level sentence.<|end|>"
 
1
 
2
+ # Fine-Tuned Mistral-7B CEFR Model
3
 
4
+ This is a fine-tuned version of `unsloth/mistral-7b-bnb-4bit` for CEFR-level sentence generation, evaluated with a fine-tuned classifier from `Mr-FineTuner/Skripsi_validator_best_model`.
5
 
6
+ - **Base Model**: unsloth/mistral-7b-bnb-4bit
7
  - **Fine-Tuning**: LoRA with balanced dataset
8
  - **Training Details**:
9
  - Dataset: CEFR-level sentences (balanced)
 
12
  - Optimizer: adamw_8bit
13
  - Early Stopping: Patience=3, threshold=0.01
14
  - **Evaluation Metrics (Exact Matches)**:
15
+ - CEFR Classifier Accuracy: 0.500
16
+ - Precision (Macro): 0.333
17
+ - Recall (Macro): 0.500
18
+ - F1-Score (Macro): 0.389
19
  - **Evaluation Metrics (Within ±1 Level)**:
20
+ - CEFR Classifier Accuracy: 0.833
21
+ - Precision (Macro): 0.750
22
+ - Recall (Macro): 0.833
23
+ - F1-Score (Macro): 0.778
24
  - **Other Metrics**:
25
+ - Perplexity: 2.404
26
  - Diversity (Unique Sentences): 0.100
27
+ - Inference Time (ms): 6267.856
28
  - Model Size (GB): 4.2
29
+ - Robustness (F1): 0.369
30
  - **Confusion Matrix (Exact Matches)**:
31
  - CSV: [confusion_matrix_exact.csv](confusion_matrix_exact.csv)
32
  - Image: [confusion_matrix_exact.png](confusion_matrix_exact.png)
 
35
  - Image: [confusion_matrix_within1.png](confusion_matrix_within1.png)
36
  - **Per-Class Confusion Metrics (Exact Matches)**:
37
  - A1: TP=0, FP=0, FN=10, TN=50
38
+ - A2: TP=0, FP=10, FN=10, TN=40
39
+ - B1: TP=10, FP=10, FN=0, TN=40
40
+ - B2: TP=10, FP=10, FN=0, TN=40
41
+ - C1: TP=10, FP=0, FN=0, TN=50
42
  - C2: TP=0, FP=0, FN=10, TN=50
43
  - **Per-Class Confusion Metrics (Within ±1 Level)**:
44
  - A1: TP=10, FP=0, FN=0, TN=50
45
+ - A2: TP=10, FP=0, FN=0, TN=50
46
  - B1: TP=10, FP=0, FN=0, TN=50
47
+ - B2: TP=10, FP=10, FN=0, TN=40
48
+ - C1: TP=10, FP=0, FN=0, TN=50
49
+ - C2: TP=0, FP=0, FN=10, TN=50
50
  - **Usage**:
51
  ```python
52
  from transformers import AutoModelForCausalLM, AutoTokenizer
53
 
54
+ model = AutoModelForCausalLM.from_pretrained("Mr-FineTuner/With_synthetic_Dataset_mistral-1epoch")
55
+ tokenizer = AutoTokenizer.from_pretrained("Mr-FineTuner/With_synthetic_Dataset_mistral-1epoch")
56
 
57
  # Example inference
58
  prompt = "<|user|>Generate a CEFR B1 level sentence.<|end|>"