JacobLinCool commited on
Commit
7baebb8
·
verified ·
1 Parent(s): fec28e6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +145 -151
README.md CHANGED
@@ -1,199 +1,193 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
 
102
 
103
- ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
 
 
 
 
106
 
107
- ### Testing Data, Factors & Metrics
 
 
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
 
 
 
 
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
118
 
119
- [More Information Needed]
 
 
 
 
120
 
121
- #### Metrics
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
124
 
125
- [More Information Needed]
 
126
 
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ language:
5
+ - multilingual
6
+ - ar
7
+ - zh
8
+ - cs
9
+ - da
10
+ - nl
11
+ - en
12
+ - fi
13
+ - fr
14
+ - de
15
+ - he
16
+ - hu
17
+ - it
18
+ - ja
19
+ - ko
20
+ - no
21
+ - pl
22
+ - pt
23
+ - ru
24
+ - es
25
+ - sv
26
+ - th
27
+ - tr
28
+ - uk
29
+ tags:
30
+ - nlp
31
+ - code
32
+ - audio
33
+ - automatic-speech-recognition
34
+ - speech-summarization
35
+ - speech-translation
36
+ - phi-4-multimodal
37
+ - phi
38
+ - phi-4-mini
39
+ base_model: microsoft/Phi-4-multimodal-instruct
40
  ---
41
 
42
+ # Phi-4-Audio
43
 
44
+ **Phi-4-Audio** is a highly efficient adaptation of the [Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) model, exclusively optimized for audio-text interactions (e.g., Automatic Speech Recognition).
45
 
46
+ By surgically removing the vision processing components—including the image encoder, vision projection layers, and associated processing logic—we have created a streamlined model that delivers lower memory usage while retaining the original model's powerful audio understanding capabilities.
47
 
48
+ ## Usage & Performance
49
 
50
+ This model is ideal for scenarios where audio processing is the sole modality, such as transcription services, voice assistants, and audio-based QA systems. It is also well-suited for researchers aiming to fine-tune the model specifically for audio tasks without the overhead of unused vision parameters.
 
 
 
 
 
 
51
 
52
+ ### Key Improvements
 
 
 
 
 
 
53
 
54
+ Comparing **Phi-4-Audio** against the original **Phi-4-multimodal-instruct** on a single NVIDIA RTX 5090 GPU:
55
 
56
+ * **Reduced Footprint:** Parameter count reduced by approximately **450 Million**.
57
+ * **Lower VRAM Usage:** Peak inference memory usage reduced by **~10% (0.84 GB saved)**.
58
+ * **Same Audio Performance:** Retains full audio-understanding capabilities while running lighter.
 
 
59
 
60
  ## Uses
61
 
62
+ ### Intended Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ * **Automatic Speech Recognition (ASR):** High-fidelity transcription of spoken audio.
65
+ * **Speech Translation:** Direct speech-to-text translation.
66
+ * **Audio Summarization:** Generating summaries from audio recordings.
67
+ * **Spoken Instruction Tuning:** Fine-tuning on pure audio-text pairs.
68
 
69
+ ### Out of Scope
70
 
71
+ - **Image/Vision Tasks:** This model **cannot** process images. Attempts to pass image inputs will fail or raise errors, as the vision encoders have been stripped.
72
 
73
+ ## How to Get Started
74
 
75
+ The model is fully compatible with the Hugging Face `transformers` library. You can use it exactly like the original model, but inputting images is not supported.
76
 
77
+ ```python
78
+ import torch
79
+ from torch import nn
80
+ from io import BytesIO
81
+ from urllib.request import urlopen
82
+ from soundfile import read
83
+ from transformers import (
84
+ AutoModelForCausalLM,
85
+ AutoProcessor,
86
+ Phi4MultimodalForCausalLM,
87
+ Phi4MultimodalModel,
88
+ )
89
 
 
90
 
91
+ class StrippedVisionModule(nn.Module):
92
+ def __init__(self):
93
+ super().__init__()
94
 
95
+ def forward(
96
+ self,
97
+ **kwargs,
98
+ ):
99
+ raise ValueError("Vision is not supported")
100
 
 
101
 
102
+ def strip_vision_inplace(
103
+ model: Phi4MultimodalForCausalLM | Phi4MultimodalModel,
104
+ ) -> Phi4MultimodalForCausalLM | Phi4MultimodalModel:
105
+ passed_model = model
106
 
107
+ if isinstance(model, Phi4MultimodalForCausalLM):
108
+ model = model.model
109
 
110
+ emb_ext = model.embed_tokens_extend
111
+ if hasattr(emb_ext, "image_embed"):
112
+ emb_ext.image_embed = StrippedVisionModule()
113
+ if hasattr(emb_ext.audio_embed, "down_proj_for_vision_speech"):
114
+ emb_ext.audio_embed.down_proj_for_vision_speech = StrippedVisionModule()
115
+ if hasattr(emb_ext.audio_embed, "up_proj_for_vision_speech"):
116
+ emb_ext.audio_embed.up_proj_for_vision_speech = StrippedVisionModule()
117
 
118
+ try:
119
+ torch.cuda.empty_cache()
120
+ except:
121
+ pass
122
 
123
+ return passed_model
124
 
 
125
 
126
+ model_path = "JacobLinCool/phi-4-audio"
127
+ device = "cuda"
128
+ model = AutoModelForCausalLM.from_pretrained(
129
+ model_path, device_map=device, dtype=torch.bfloat16
130
+ )
131
+ processor = AutoProcessor.from_pretrained(model_path)
132
+ strip_vision_inplace(model)
133
 
 
134
 
135
+ audio_url = "https://huggingface.co/datasets/JacobLinCool/audio-testing/resolve/main/audio/audio-1.mp3"
136
+ audio, samplerate = read(BytesIO(urlopen(audio_url).read()))
137
 
138
+ user_prompt = "<|user|>"
139
+ assistant_prompt = "<|assistant|>"
140
+ prompt_suffix = "<|end|>"
141
+ speech_prompt = "Transcribe the audio clip into text."
142
+ prompt = f"{user_prompt}<|audio|>{speech_prompt}{prompt_suffix}{assistant_prompt}"
143
 
144
+ inputs = processor(
145
+ text=prompt, audio=[audio], sampling_rate=16000, return_tensors="pt"
146
+ ).to(device)
147
 
148
+ generate_ids = model.generate(**inputs)
149
+ response = processor.batch_decode(
150
+ generate_ids[:, inputs["input_ids"].shape[1] :], skip_special_tokens=True
151
+ )[0]
152
 
153
+ print(f"{response=}")
154
+ ```
155
 
156
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
158
+ - Base Architecture: Phi-4 Multimodal
159
+ - Modifications:
160
+ - Removed `embed_tokens_extend.image_embed`
161
+ - Removed `audio_embed.down_proj_for_vision_speech`
162
+ - Removed `audio_embed.up_proj_for_vision_speech`
163
 
164
+ ## Comparisons
165
 
166
+ ### Parameter Count
167
 
168
+ | Model | Total Parameters | Reduction |
169
+ | --- | --- | --- |
170
+ | Phi-4-multimodal-instruct | 4,743,988,032 (4.74B) | - |
171
+ | Phi-4-Audio | 4,289,848,960 (4.29B) | -454M |
172
 
173
+ ### Benchmark Results (A40)
174
 
175
+ Tested on NVIDIA RTX 5090, `torch.bfloat16`.
176
 
177
+ | Metric | Original Model | Phi-4-Audio | Delta |
178
+ | --- | --- | --- | --- |
179
+ | Peak Memory (GB) | 8.88 GB | 8.04 GB | -0.84 GB |
180
+ | Inference Speed (Warm) | ~100.5 tokens/s | ~100.5 tokens/s | Similar |
181
 
182
+ ## Citation
183
 
184
+ If you use this model version, please cite the original Phi-4 Multimodal paper and acknowledge the modifications.
185
 
186
+ ```bibtex
187
+ @article{abouelenin2025phi,
188
+ title={Phi-4-mini technical report: Compact yet powerful multimodal language models via mixture-of-loras},
189
+ author={Abouelenin, Abdelrahman and Ashfaq, Atabak and Atkinson, Adam and Awadalla, Hany and Bach, Nguyen and Bao, Jianmin and Benhaim, Alon and Cai, Martin and Chaudhary, Vishrav and Chen, Congcong and others},
190
+ journal={arXiv preprint arXiv:2503.01743},
191
+ year={2025}
192
+ }
193
+ ```