Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,193 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
|
| 20 |
-
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
###
|
| 85 |
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
|
| 95 |
-
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
|
|
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
#### Factors
|
| 116 |
|
| 117 |
-
|
|
|
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
|
|
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
##
|
| 184 |
|
| 185 |
-
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
| 190 |
|
| 191 |
-
|
| 192 |
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
|
| 196 |
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
license: mit
|
| 4 |
+
language:
|
| 5 |
+
- multilingual
|
| 6 |
+
- ar
|
| 7 |
+
- zh
|
| 8 |
+
- cs
|
| 9 |
+
- da
|
| 10 |
+
- nl
|
| 11 |
+
- en
|
| 12 |
+
- fi
|
| 13 |
+
- fr
|
| 14 |
+
- de
|
| 15 |
+
- he
|
| 16 |
+
- hu
|
| 17 |
+
- it
|
| 18 |
+
- ja
|
| 19 |
+
- ko
|
| 20 |
+
- no
|
| 21 |
+
- pl
|
| 22 |
+
- pt
|
| 23 |
+
- ru
|
| 24 |
+
- es
|
| 25 |
+
- sv
|
| 26 |
+
- th
|
| 27 |
+
- tr
|
| 28 |
+
- uk
|
| 29 |
+
tags:
|
| 30 |
+
- nlp
|
| 31 |
+
- code
|
| 32 |
+
- audio
|
| 33 |
+
- automatic-speech-recognition
|
| 34 |
+
- speech-summarization
|
| 35 |
+
- speech-translation
|
| 36 |
+
- phi-4-multimodal
|
| 37 |
+
- phi
|
| 38 |
+
- phi-4-mini
|
| 39 |
+
base_model: microsoft/Phi-4-multimodal-instruct
|
| 40 |
---
|
| 41 |
|
| 42 |
+
# Phi-4-Audio
|
| 43 |
|
| 44 |
+
**Phi-4-Audio** is a highly efficient adaptation of the [Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) model, exclusively optimized for audio-text interactions (e.g., Automatic Speech Recognition).
|
| 45 |
|
| 46 |
+
By surgically removing the vision processing components—including the image encoder, vision projection layers, and associated processing logic—we have created a streamlined model that delivers lower memory usage while retaining the original model's powerful audio understanding capabilities.
|
| 47 |
|
| 48 |
+
## Usage & Performance
|
| 49 |
|
| 50 |
+
This model is ideal for scenarios where audio processing is the sole modality, such as transcription services, voice assistants, and audio-based QA systems. It is also well-suited for researchers aiming to fine-tune the model specifically for audio tasks without the overhead of unused vision parameters.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
### Key Improvements
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
Comparing **Phi-4-Audio** against the original **Phi-4-multimodal-instruct** on a single NVIDIA RTX 5090 GPU:
|
| 55 |
|
| 56 |
+
* **Reduced Footprint:** Parameter count reduced by approximately **450 Million**.
|
| 57 |
+
* **Lower VRAM Usage:** Peak inference memory usage reduced by **~10% (0.84 GB saved)**.
|
| 58 |
+
* **Same Audio Performance:** Retains full audio-understanding capabilities while running lighter.
|
|
|
|
|
|
|
| 59 |
|
| 60 |
## Uses
|
| 61 |
|
| 62 |
+
### Intended Use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
* **Automatic Speech Recognition (ASR):** High-fidelity transcription of spoken audio.
|
| 65 |
+
* **Speech Translation:** Direct speech-to-text translation.
|
| 66 |
+
* **Audio Summarization:** Generating summaries from audio recordings.
|
| 67 |
+
* **Spoken Instruction Tuning:** Fine-tuning on pure audio-text pairs.
|
| 68 |
|
| 69 |
+
### Out of Scope
|
| 70 |
|
| 71 |
+
- **Image/Vision Tasks:** This model **cannot** process images. Attempts to pass image inputs will fail or raise errors, as the vision encoders have been stripped.
|
| 72 |
|
| 73 |
+
## How to Get Started
|
| 74 |
|
| 75 |
+
The model is fully compatible with the Hugging Face `transformers` library. You can use it exactly like the original model, but inputting images is not supported.
|
| 76 |
|
| 77 |
+
```python
|
| 78 |
+
import torch
|
| 79 |
+
from torch import nn
|
| 80 |
+
from io import BytesIO
|
| 81 |
+
from urllib.request import urlopen
|
| 82 |
+
from soundfile import read
|
| 83 |
+
from transformers import (
|
| 84 |
+
AutoModelForCausalLM,
|
| 85 |
+
AutoProcessor,
|
| 86 |
+
Phi4MultimodalForCausalLM,
|
| 87 |
+
Phi4MultimodalModel,
|
| 88 |
+
)
|
| 89 |
|
|
|
|
| 90 |
|
| 91 |
+
class StrippedVisionModule(nn.Module):
|
| 92 |
+
def __init__(self):
|
| 93 |
+
super().__init__()
|
| 94 |
|
| 95 |
+
def forward(
|
| 96 |
+
self,
|
| 97 |
+
**kwargs,
|
| 98 |
+
):
|
| 99 |
+
raise ValueError("Vision is not supported")
|
| 100 |
|
|
|
|
| 101 |
|
| 102 |
+
def strip_vision_inplace(
|
| 103 |
+
model: Phi4MultimodalForCausalLM | Phi4MultimodalModel,
|
| 104 |
+
) -> Phi4MultimodalForCausalLM | Phi4MultimodalModel:
|
| 105 |
+
passed_model = model
|
| 106 |
|
| 107 |
+
if isinstance(model, Phi4MultimodalForCausalLM):
|
| 108 |
+
model = model.model
|
| 109 |
|
| 110 |
+
emb_ext = model.embed_tokens_extend
|
| 111 |
+
if hasattr(emb_ext, "image_embed"):
|
| 112 |
+
emb_ext.image_embed = StrippedVisionModule()
|
| 113 |
+
if hasattr(emb_ext.audio_embed, "down_proj_for_vision_speech"):
|
| 114 |
+
emb_ext.audio_embed.down_proj_for_vision_speech = StrippedVisionModule()
|
| 115 |
+
if hasattr(emb_ext.audio_embed, "up_proj_for_vision_speech"):
|
| 116 |
+
emb_ext.audio_embed.up_proj_for_vision_speech = StrippedVisionModule()
|
| 117 |
|
| 118 |
+
try:
|
| 119 |
+
torch.cuda.empty_cache()
|
| 120 |
+
except:
|
| 121 |
+
pass
|
| 122 |
|
| 123 |
+
return passed_model
|
| 124 |
|
|
|
|
| 125 |
|
| 126 |
+
model_path = "JacobLinCool/phi-4-audio"
|
| 127 |
+
device = "cuda"
|
| 128 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 129 |
+
model_path, device_map=device, dtype=torch.bfloat16
|
| 130 |
+
)
|
| 131 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
| 132 |
+
strip_vision_inplace(model)
|
| 133 |
|
|
|
|
| 134 |
|
| 135 |
+
audio_url = "https://huggingface.co/datasets/JacobLinCool/audio-testing/resolve/main/audio/audio-1.mp3"
|
| 136 |
+
audio, samplerate = read(BytesIO(urlopen(audio_url).read()))
|
| 137 |
|
| 138 |
+
user_prompt = "<|user|>"
|
| 139 |
+
assistant_prompt = "<|assistant|>"
|
| 140 |
+
prompt_suffix = "<|end|>"
|
| 141 |
+
speech_prompt = "Transcribe the audio clip into text."
|
| 142 |
+
prompt = f"{user_prompt}<|audio|>{speech_prompt}{prompt_suffix}{assistant_prompt}"
|
| 143 |
|
| 144 |
+
inputs = processor(
|
| 145 |
+
text=prompt, audio=[audio], sampling_rate=16000, return_tensors="pt"
|
| 146 |
+
).to(device)
|
| 147 |
|
| 148 |
+
generate_ids = model.generate(**inputs)
|
| 149 |
+
response = processor.batch_decode(
|
| 150 |
+
generate_ids[:, inputs["input_ids"].shape[1] :], skip_special_tokens=True
|
| 151 |
+
)[0]
|
| 152 |
|
| 153 |
+
print(f"{response=}")
|
| 154 |
+
```
|
| 155 |
|
| 156 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
+
- Base Architecture: Phi-4 Multimodal
|
| 159 |
+
- Modifications:
|
| 160 |
+
- Removed `embed_tokens_extend.image_embed`
|
| 161 |
+
- Removed `audio_embed.down_proj_for_vision_speech`
|
| 162 |
+
- Removed `audio_embed.up_proj_for_vision_speech`
|
| 163 |
|
| 164 |
+
## Comparisons
|
| 165 |
|
| 166 |
+
### Parameter Count
|
| 167 |
|
| 168 |
+
| Model | Total Parameters | Reduction |
|
| 169 |
+
| --- | --- | --- |
|
| 170 |
+
| Phi-4-multimodal-instruct | 4,743,988,032 (4.74B) | - |
|
| 171 |
+
| Phi-4-Audio | 4,289,848,960 (4.29B) | -454M |
|
| 172 |
|
| 173 |
+
### Benchmark Results (A40)
|
| 174 |
|
| 175 |
+
Tested on NVIDIA RTX 5090, `torch.bfloat16`.
|
| 176 |
|
| 177 |
+
| Metric | Original Model | Phi-4-Audio | Delta |
|
| 178 |
+
| --- | --- | --- | --- |
|
| 179 |
+
| Peak Memory (GB) | 8.88 GB | 8.04 GB | -0.84 GB |
|
| 180 |
+
| Inference Speed (Warm) | ~100.5 tokens/s | ~100.5 tokens/s | Similar |
|
| 181 |
|
| 182 |
+
## Citation
|
| 183 |
|
| 184 |
+
If you use this model version, please cite the original Phi-4 Multimodal paper and acknowledge the modifications.
|
| 185 |
|
| 186 |
+
```bibtex
|
| 187 |
+
@article{abouelenin2025phi,
|
| 188 |
+
title={Phi-4-mini technical report: Compact yet powerful multimodal language models via mixture-of-loras},
|
| 189 |
+
author={Abouelenin, Abdelrahman and Ashfaq, Atabak and Atkinson, Adam and Awadalla, Hany and Bach, Nguyen and Bao, Jianmin and Benhaim, Alon and Cai, Martin and Chaudhary, Vishrav and Chen, Congcong and others},
|
| 190 |
+
journal={arXiv preprint arXiv:2503.01743},
|
| 191 |
+
year={2025}
|
| 192 |
+
}
|
| 193 |
+
```
|