Update README.md
Browse files
README.md
CHANGED
|
@@ -4,4 +4,64 @@ datasets:
|
|
| 4 |
- natural_questions
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
- natural_questions
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
+
tags:
|
| 8 |
+
- colbert
|
| 9 |
+
---
|
| 10 |
+
# ColBERT NQ Checkpoint
|
| 11 |
+
|
| 12 |
+
This trained model is based on the [ColBERT](https://github.com/stanford-futuredata/ColBERT) model, trained on the [Natural Questions](https://huggingface.co/datasets/natural_questions) dataset.
|
| 13 |
+
|
| 14 |
+
# Model Details
|
| 15 |
+
|
| 16 |
+
Model is based on ColBERT, which in turn is based around a BERT encoder. The model is trained for text retrieval using a contrastive loss; given a query there's a relevant and non relevant passages.
|
| 17 |
+
|
| 18 |
+
The corpus is based on [Wikipeida](https://huggingface.co/datasets/wiki_dpr).
|
| 19 |
+
|
| 20 |
+
# Uses
|
| 21 |
+
|
| 22 |
+
Model can be used by the [ColBERT](https://github.com/stanford-futuredata/ColBERT) codebase to initiate a retriever; one needs to build a vector index and then queries can be ran.
|
| 23 |
+
|
| 24 |
+
# Evaluation
|
| 25 |
+
|
| 26 |
+
Evaluation results on NQ dev:
|
| 27 |
+
|
| 28 |
+
<table>
|
| 29 |
+
<colgroup>
|
| 30 |
+
<col class="org-right">
|
| 31 |
+
<col class="org-right">
|
| 32 |
+
<col class="org-right">
|
| 33 |
+
</colgroup>
|
| 34 |
+
<thead>
|
| 35 |
+
<tr>
|
| 36 |
+
<th scope="col" class="org-right">NQ</th>
|
| 37 |
+
<th scope="col" class="org-right">Recall</th>
|
| 38 |
+
<th scope="col" class="org-right">MRR</th>
|
| 39 |
+
</tr>
|
| 40 |
+
</thead>
|
| 41 |
+
|
| 42 |
+
<tbody>
|
| 43 |
+
<tr>
|
| 44 |
+
<td class="org-right">10</td>
|
| 45 |
+
<td class="org-right">71.1</td>
|
| 46 |
+
<td class="org-right">52.0</td>
|
| 47 |
+
</tr>
|
| 48 |
+
|
| 49 |
+
<tr>
|
| 50 |
+
<td class="org-right">20</td>
|
| 51 |
+
<td class="org-right">76.3</td>
|
| 52 |
+
<td class="org-right">52.3</td>
|
| 53 |
+
</tr>
|
| 54 |
+
|
| 55 |
+
<tr>
|
| 56 |
+
<td class="org-right">50</td>
|
| 57 |
+
<td class="org-right">80.4</td>
|
| 58 |
+
<td class="org-right">52.5</td>
|
| 59 |
+
</tr>
|
| 60 |
+
|
| 61 |
+
<tr>
|
| 62 |
+
<td class="org-right">100</td>
|
| 63 |
+
<td class="org-right">82.7</td>
|
| 64 |
+
<td class="org-right">52.5</td>
|
| 65 |
+
</tr>
|
| 66 |
+
</tbody>
|
| 67 |
+
</table>
|